

AFRL-IF-RS-TR-2003-220 Vol 1 (of 2)

Final Technical Report
September 2003

COMPILER OPTIMIZATIONS FOR POWER-
AWARE COMPUTING

Georgia Tech Research Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J870

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-220 Vol 1 (of 2) has been reviewed and is approved for
publication.

APPROVED: /s/
 RAYMOND A. LIUZZI
 Project Engineer

 FOR THE DIRECTOR:

 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

/s/

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Apr 00 – Jan 03

4. TITLE AND SUBTITLE
COMPILER OPTIMIZATIONS FOR POWER-AWARE COMPUTING

6. AUTHOR(S)
Vincent J. Mooney III

5. FUNDING NUMBERS
C - F30602-00-2-0564
PE - 62301E
PR - HPSW
TA - 00
WU - 08

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Tech Research Corporation
School of Electrical & Computer Engineering
777 Atlantic Drive
Atlanta Georgia 30332-0250

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-220 Vol 1 (of 2)

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi/IFTB/(315) 330-3577/ Raymond.Liuzzi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This final report summarizes work done on the DARPA funded project "Compiler Optimizations for Power Aware
Computing." Volume I addresses methodologies invented that can be categorized as software based approaches,
hardware based approaches and combined software/hardware based approaches. One of the software based
approaches, data remapping, showed a 3.1X energy*delay reduction on a realistic example. One of the hardware based
approaches, frequency/voltage scaling of second-level memory, showed a 1.3X energy*delay reduction on a realistic
example. A combination of data remapping and frequency/voltage scaling of second level memory showed a 2.6X
reduction in energy*delay but also showed the lowest power (energy/time) of any of the approaches considered.
Volume II addresses realization of the world's first Wearable Motherboard or an intelligent garment for the 21st Century.
The motherboard provides an extremely versatile framework for the incorporation of sensing, monitoring, and
information processing devices.

15. NUMBER OF PAGES
35

14. SUBJECT TERMS
Power-Aware Computing, Architecture, Hardware/Software, Compiler

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1. Introduction 1

2. Target and Sample 2.6X Reduction in Energy *Delay 1
 2.1 Base Architecture 1
 2.2 Sample 2.6X Reduction in Energy* Delay Using Data Remapping
 and Frequency/Voltage Sealing of Memory 2

3. Computer Architecture Savings 2

4. Additional Funding 3
 4.1 HP Funding of Ocgur Celebican for Cycle Accurate Energy
 Estimation of ARM Based Embedded Systems 3
 4.2 NSF Funding of the EDR Paradigm 3
 4.3 Intel Funding 3

5. Conclusion 3

References 4

Appendix A: System Level Power-Performance Trade-Offs in Embedded
 Systems Using Voltage and Frequency Sealing of off Chip
 Buses and Memory 6

Appendix B: Combining Remapping and Voltage/Frequency Sealing of Second
 Level Memory for Energy Reduction in Embedded Systems 12

Appendix C: Power and Energy Impact by Loop Transformations 18

Appendix D: HA2TSO: Hierarchical Time Slack Distribution for Ultra-Low
 Power CMOS VLSI 26

List of Figures

Figure 1: Architecture 1
Figure 2: Energy Distribution (DR + Freq/Volt Scale Mem., Health) 2
Figure 3: Resulting Reductions in Energy and Energy* Delay 3

 i

���������
	���������

����������� �"!$#&%(')'*����+-,.,/,
021�3546487�489;:<7>=?1A@/B/C>1ED87�DGF5HJIK4�LNMO@P=ABQ:<F5R8CSF5=A=?B/C>F5R

T�=A4�B/R8CUDWV�F5XY@PC>@/O$@P=�489[Z&=?1�35F5487S4�R8\
] @/7UD8F^@�D6_`T]ba�c8a�a^dfe�c^g8c

h =?i$B/O D8BY\ d8j _ d8c�c�a

k lnmKo$p qsr�tvu�o wxqKm

y{zf|~}��*�*�������Y�8�����K}��f��������|��.�.}"��zf�����A�����)�A�f���A����zf�Q�*�������.���K�Y�?��|������.�(�����A�K�*|����Y�s [�)��|���|��/����|��A�*}�¡¢�A��£5�����.�"¤¥�{�����
���A�K�*�)��|��f¦A§v¨U�� �£^¤&�{©�ªG�� �£^¤&�
�{��}�}��f�f�8�������/��«E¬�&¤&®¥£^¤¯�Y���?�������x�&°±¤&²5®¥³�²5´�µA¶�µ?·P¸�µ�µ�¸�·P¸�µA¹�¶�ºfª
y{zf�;�f�������/���¥}»���������/���A�¼¤¥�f��|��2·�½f¾*·�µ�µ�µ*ª$¿&|�¦Azf��|�¦AzA��}{��¡5���f���*�G�)|��*¦A}¥�����;��|�}»���/��|�����zf�;¡¢�A��������|��*¦�}��.�x��|����*}.ª
ÀÁ�*�x���A}��.�v��|���z���zf|~}����.�G�A�»��|�};��}»�.�*���������<�*�*���5���.�G�A�»�[¡¢���<��}��f«f�f�������/���;}����������.�Â|��-²f�.«f���G����¬¼·�µ�µ*Ã����¼��zf�����/������«f���

������zf�Y��«8�A�����^ª

Ä Å�Æ<p Ç�È{oÉÆ�mvrËÊ�Æ�ÌÎÍ¼ÏxÈÐÄ�Ñ�Ò;Ó ÔÕÈ¥r�tvu�o5wYq�mÖw.mØ×ÙmvÈ&p Ç�Ú�Û�ÜÝÈ&ÏYÆ�Ú

Þ��x¡¢�A���;�f���.}��Y�?��|��f¦���}������f����z*|�¦Azf��|�¦�z?�����.}��f�ß��}Y¾)�����*��}��¥�f�.�.������«f��|��xà*¬��f�.}��x��|�«8����zf�<«*�A}»�<�.��}���ª

á{â�ã äWå æ?ç¯è
é*ê*ë[ì�í)ç2ê8ífî¥éfç
y{zf�s��¬?�*|��.���Á�.�"«8�.�f�f�.��}�¬E}»���.�ï�Y���*}�|~}���}���¡¥�v�f���)�x�/}�}����/¾2��ðG¸���zf|����K�.������¬����G��£`��|��?���/����|����x�f|��KÞ��?�����N¨>£���Þ�©;«f�*}��.}
�Y���f�f�/����|��f¦���zf����zf|��G}Á��}�}»z*������|���²$|�¦��f����ÃAª6ñ-�[}��x���f����}�|����f�~����|������.�Eò?|������f���Y�?�`�������.�A}»�f���¥�/����z��x�A�K�8���*�Y�?��}�zf�����
|���²$|�¦��f����ÃK���Y�Y�f�������.��¬Aª[²*�������f�[�f���)�Y�.}�}»�A�&���)�)�Y�$�����*}��.�ÂóÂ¤&®&ô�¾^�Q�x¬)�x�����A�Y�x�*��������õ �.��|����A¦����)�)�Y�5��¡�¹P¸�}�����¦���®�ö»ô*�
������zf|����/�����f������«)����|��f�.��¡¢���A�Õ��z*�K÷&�f|�òA�Y��}»|���¬¼��¡�ó¼|���z*|�¦?���2ø ·�º�ùUª"ó�¤[®&ô��Y�������*�-¤[®¥ób|��*}»�����*����|��A�*}.ªK�������*�����/�v������z*�
zf|�¦�zf¸S���YòA�Y�Á¨ú��ª ¦*ª�¾*|��*}������G����|����f¸S���YòA�Y�û©{�G�����Y���/}���|�������|����¼���x��zf�)�f}Y¾8�xü)�/�x�)��|��f¦Q��õ �Y��|�����¦����)�)�Y�6|�}&�������"���.�x�f��������«*�)������}��
�������"}������<ª{ñ-��}�|����f�~�����/����zf�Kó�¤&®[ôv���E�f�Y�2�Yü)�.�x�f��|��f¦s���*�[���*�f��|~�Y����|����*}¥�*}»|��f¦Qô)¬?�*���*}�¬)}¥õ[�{ôv���G�¼���.��}��f���.���8�����.�
�*}�|��f¦;��zf�&ô)¬?�*���*}�¬)} £5�����.�`���A���f|����Y�/ª5y2�<�A«)����|����������.�x�f���������������*}�|�}»���A�»¸U���Yò��.�E�K�)�)�.�f��¡^ó�¤[®&ô�¾����¥}�¬?�?��zf�.}�|��.�.�Kó�¤&®[ô
�*}�|��f¦��Ky¥ôfó��ýµ*ª ·A¹�þ���|�«f������¬�ª

²$|�¦A�f���KÃAÿ ¤¥����zf|ß���.�x���f���
y6�v�.}»��|������������Y���A��¬��G�����Y�<�x�A�*}��f���)��|����n¾5���W���G����¬A��|��.��� ���)�)�Y��«*��}��.�������ª2³n|����x�"���>ª~ø ·�¹/ùÁ�{��};�G}»�/�nø º�ùSª�y¥ô)ó��

µ*ª ·A¹�þv���/��zf�f�A���A¦�¬��*�������K�Y���.��}����*�Q}»��|�����z*|��f¦��A����|�òE|ß��¬�¡¢����� õ[�{ôQ}�|����f������|����Q���.���[¡¢�.����}�|��f�f�)�&�f�����*ª5y6�K�.}»��|��������;«f�*}
�8�����.�.¾E«f�G}����.�f¦���z*}{���v���v���x���*���^«G�?������¨SôE�E|ßð�«G�?�����s¡¢����� ¿[£�©����Y�������/��}��f���/�����*�s��zf���Y���*���Y|ß�����*�Y�����*���G�����Y�{���Y���
�.���~�x�f�~�����.��ø ·f¾�¶�ùUª$y{z*�¥�x�����f|����Y�`«*�A}»�/�����.��zf�*| � �f��|~} |��K�*���.�K�.�?���.���A��y2��|����������n¾��<�x�A�K�*|����Y�5¡¢�������Y�������<|��*�x���*�)|��f¦�¤&®&ó|��*}»�����*����|��A�Q¦A�Y�f�.���������/ª{ø º�ùn�xü)�f�~��|��*}���zf���f�x����|��2�f���)�Y�.�)�f���;��¡6��zf�<�8�����.���.}»��|�������|����2ª

·

goodelle
Text Box
1

goodelle
Text Box

ö��¼}�zf�����.¾)��zf��«*�A}»�<�.��}���¾*�A}¥}»z*�����Q|���²$|�¦A�f����ÃA¾*�x�A�*}�|�}»��}{��¡�¨ú|~©¥�QÃ/µ�µAó�¿¥��¤[®¥óv¸U��|�����®�ö»ôG� �f���)�x�/}�}�������zf�?}»�;�~�P¬��A�)�
�*}��.}���µAµf¾�Ã/·�¹��������*}»|~}»������}<|���y¥ô)ó�� µ*ª ·A¹�þN���/��zf�f������¦A¬�¾{¨¢|�|~©sÃ.ó�Þ �A��¹)ÃP·��<Þ ��¡[ô)®¥¤[ó |��N��}»�.�*���������s��zf|���|��Ny¥ô)ó��
µ*ª ·A¹�þ¼���.��zf�f�A���A¦�¬����f�f�f|��f¦����{�Y|���zf�.�<Ã.µAµ�ó�¿&�[�A��¹�µ�ó�¿&��¾)���G��¨ú|�|�|~©{�K£���Þ
��|���zv«f�G}{��|��f�.}��Y���f�*�.����|��*¦"��zf�;�f���)�Y�.}�}»�A�Á���
��zf�"ô)®¥¤[óÝ���.�K�A��¬Q��zf|���¨>}»�/�x���G�����YòA�Y�^���Y������¬f©�ª

á{âSá �{å����
	�ç�á{â�����
ç��&î[ê8í)ì����ýì������¥çné����
� � ç�	�å!��" æ?ì��#�$� å$í)å%�
ç�� å��&�[ì��#��å'�&�)(�éfç+*�î&ç��&ê,�
-
. �/	�í)å��`ç0��ê�å�	�ì��&�1��243 ç����`é5�

y{zf���.�f�Y��¦�¬Â���)��|���|��.����|��A�W�K�Y��zf�)�)�A���A¦�|��.};����|��EòA�Y�?���/���.���W«G�Q�Y�����Y¦A����|��.�.�Â�A}�}���¡û���{������«*�A}»�/�W���f�f���A�A��zf�.}.¾^z*�����)�{�����
«*�A}»�/�����*�f���?����zf�/}¥���G���x�A�"«f|��f�.�Â}»��¡û���������76Pz*�����)�{�����&«G��}��.�����f�f���A����z*�.}.ª� [�f��}���¡û���{�����<«*�A}»�/�����f�*���?����zv|�}[�E�f�����Â�A}
��[�����&®¥�Y�����f�*|��f¦?§[���*�<|~}5�[}���¡û���{�����&¨ú�Y�����f|����.��©n���/��zf�f| � �f�Aø ´f¾�¹E¾8�/ùUª5y{zf|�}5���f�f���A����z<�:9s�x|��Y�?����¬<���.�����*}$���K���f�f��|~�Y����|��A�!; }�f���������P¬A���)��|����K�.������¬v}��*��z¼��z*���<�f�����s�.���.���Y�?��}[��zG���<���������.�x�/}�}��.�¼�Y���?���.�K�8�������*�Y���G}»��¬������K���~}»���f���A�x�/�¼���A¦��Y��zf�.�[|��
���Y���A��¬�|����Y���?��|�¦��*���*}`�A�f�)���.}�}`}��*���Y�.}.ª6ö��s}��*��zs�<�{�P¬�¾?�f�����<���.�����f�f|��f¦<���.�)�G�x�.}��Y�A��zf����|�}�} ������z*�&}»�/�x�A�*�f����¬"���.�K�A��¬
}�|��G�x�;�.�A��zQ���A�A����¡5���Y�A��zf�;��|��f��¨¢�G}»�*������¬�º��A�¥½��A���������[�������f}�¡¢����� �Y���?��|�¦��f�A�*}����Y������¬����*�)���/}�}��.}�©�ª

²$|�¦A�f����·fÿ`À`�f�.��¦A¬s�)|�}»����|�«f�)��|�����¨>[®=<�²*��� � 6Põ �����&ô)�Y�����<ó¼�.�vª�¾*¿&�.���ß��zG©
ö��N��zf|~}��xüf���K�*���v���v�Y����«f|��*�.� [�����-®��Y�����*�f|��*¦-��|���z �-z*�����)�{�����x¸U«*�A}»�/�����f�f���A�A��zn¾ �*���K�.��¬A¾�òA��������¦��>6P¡¢��� � �f�Y�*�Y¬}��Y����|��f¦v��¡��K�.������¬�ª�ñ����������Y���.�Â}��f�f�*��¬�ò���������¦��K���f��¬¼¡¢�A�;��zf����ðG¸���zf|������Y���A��¬���z*|������f���)�Y�.}�}»�A�;�Y�������A�Y�)�<��zf�s}������

òA��������¦A�"��}[��zf��«G��}��K�.��}��Aø ·?¾n¶PùSª"ñ������~}»�����)�A�)���/�Â��}��������"«f�fð8�.�[���Q��ð�}��x����z*���8�Y��¡¢���������*�Y���)�.¦������f����|����Â�)�*�"���Qz*���ß¡û¸
}��G�.�.����ð8¸U��z*|����K�.������¬�ª"y{zf���.�*�Â���.}��f������¡Á��zf���x����«f|��*����|��A�Â��¡���zf�/}»�����/��zf�f| � �f�.}<�.���Â«8��}»�.�Y�-|��-²$|�¦A�f���s·fª"¤¥���5¡¢���f��������A�<�x���G}»�f���.��}���¡��Y�f�.��¦A¬�}»zf������������zf�����x¡û����¡�²$|�¦A�f����·�¡¢���;�A�f�<«*��}����Y��}��K��¡�²$|�¦��f����Ã@?v��z*���f���)�Y�.}�}»�A���Y������¾���z*�
�f���)�x�/}�}����A; }�³`Ã<�.����zf�A¾E��zf�<��ðG¸���zf|��-¨>³6·�©����Y���A��¬����*����zf�<��ðG¸���zf|��Q«f�G}»�/}/?s�f�.�x���.�A}»����zf�.�����<���f�*��¬��������®��Y�����*�f|��*¦
���*�v²f��� � �f�Y�G�x¬B6Põ �A�ß����¦��<ô)�.����|��f¦���¡` &ð8¸»��zf|��¼ó¼�.������¬�¾f��}&}»zf������������zf�<��|�¦�z?�¥��¡5²$|�¦��f����·)ª� [òA�Y�������>¾)�.�f�Y��¦�¬��f�.�x���.�A}»�/}¡¢�����ïÃ>�)ª µC��¶ED��A�f���/}{���GFfª ·H�PºIDA���f���.}¥��|ß��zÂ���)�.�Y���/��}��<|��¼�Yü)�.�x�f��|����v��|����"��}¥���.���SÿÁ¡¢�����É½fª µ�´A¶K}��.�Y���*�*}{���Q¹fªJ��½�}»�/�x�A�*�f}.ª
y{zf�<��òA�Y�������G���.}��f���¥����zf|��YòA�.���K¶Aµfª F�º5K ���&·)ª ¶�L ���.�)�G����|�����|����.�f�Y��¦�¬BM��)�Y�~�P¬¼ø ½PùUª

N O q�ÌÎÍ¼wYÏYÈ¥pQPSR p u�T¼w�o5È¥u�o5tvp È Ê�ÆVUQwYmvÇXW
²$|�¦��f���"´�}�zf���¥}[}»�A�K�"���.�f���/}»�.�?������|�òA�<zf|�¦�zf��|�¦Az?��}�¡¢�����É��zf�"�f�������/���/ª&²$|�¦A�f���K´��*��}��;}»z*���¥}&}����������.}��f�ß��}�¡¢����� z*�����)�{�����
«*�A}»�/�N���f�f���A�A��zf�.}.¾�}��G�/�x|��G�Y������¬�¾����¼zf|�¦Azf��|�¦AzA����zf��|~�)�.�W���v�f|��A�f�Y�.���/����¡��������Y��|��f¦���z*��ò��A�ß����¦��W¨ú���*�^¾{�f�)¡¢�A�»���f�*�����Y��¬�¾
}��*��z����.�f�*����|��A���f�/�x�.}�}�|ß�������/}���zf�;���.�)�*�x��|����Q��¡2¡¢��� � �f�.�*�x¬s�A}���zf�<����z*|��.òP��«f���[�x|����x�f|��¥}»�8�Y�/�����.�)�G�x�.}���|���z����/�)�*�Y�.��}��f�f�*��¬òA��������¦A�/©����G��¡¢��� � �f�.�*�x¬Q��¡5��ð8¸U��z*|��¼³6·K���.�K�A��¬Aª�y{zf�<«8�.}»�&���.}��f���¥���A}��s·�½fª ¹)Ã7K ¨�ÃAª ºHL�©{���.�f�*����|��A��|��v�Y�f�.��¦A¬s«*�A}»�/�Q�A�
��zf|�}����.��z*�f| � �f�<�����A�f��ªy{zf�<��|~�f�)����}»�/����|��A����¡5²$|�¦��f���<´Kzf|�¦Azf��|�¦AzA��}¥}������;���/}»�f����}�¡¢�����É}»��¡û���������[���/��zf�f| � �f�.}.ªÁ÷¥�*��|����;��zf�<�f���YòE|��A�*}{z*�����)�{��������.��zf�f| � �f�{��zf|~��z��)�/�x���.��}��.}6�Y�*�Y��¦�¬<«f�)� �f�f¡¢�������f�*�����.��¬"����}��&|��*�Y���/��}��.}6�xü)�.�Y�)��|�������|����{}���|�¦AzA����¬A¾���z*�.}���}���¡û���{�����`���.��zf�f| � �f�.}�)�/�x���.�A}»���xü)�.�Y�)��|�������|��������*�^¾2�A};�����.}��f���.¾2����}����f�.�x���.�A}»�/}&�.�f�Y��¦�¬�¨ú�G�����Y�<�x�A�*}��f���)��|����-���.����|��*}��f�*��z*���f¦��/�Â}�|��*�Y���*�
òA��������¦A�.}$ò�����¬����Á�����~©Yø ´*¾A¹)¾Y�)¾A·�´�ùSª5ñ zf|��������E���K�������G}�¡¢�A��������|��A�*} �)|~������zf|��YòA���*��������¹�µ*ª ¶A´YK�¨S·7L;©5���/�)�*�x��|����¼øßÃAÃ�¾fÃ.º�ùS¾A��z*�
«8�.}»�����/}»�f���{zf�Y���[|~}�¡¢���A�±[�����K®��Y�����f�f|��f¦���z*|���zv����zf|��YòA�.�s�K¶Y�)ª ¹8FYK(���{´fª�Ã:LÙ���.�)�*�x��|����Q|����Y�f�.��¦A¬BM��)�.���P¬Aª�ø ´)¾*¹E¾Z�?¾*·�´PùSª
y{zf���*�G���nzf|�¦�z*��|�¦�z?����¡ ²$|�¦A�f���<´K�{��}{�������/���)¬s�f|�}��x�*}�}��.��|��¼ôE�/����|�����·fª ·fª
 [�f�{���*�)|ß��|��A�*���?zf|�¦�zf��|�¦�z?�$|~}$��z*���)|~}��x��ò��.��¬;��¡f��zf�&[Q\^]`_�a�b7cedE]`fhg7b&i&g�jlkemÁ�*�����A�)|�¦A�¼øßÃ/½E¾?ÃAF)¾�·)Ã�¾�·A·/ùUª$y{zf��À�[®��*�������)|�¦��

|~}$«*��}��.�<�A�"�¥òA�Y��¬;|��?���.���/}���|��*¦&�f���E��¡�ÿn�.�f�Y��¦�¬�|�}$��|��f|���|��Y�/��|����[õ[³6ô)ö2}»¬)}»���.�Ù��z*�Y�"�.�f�Y��¦�¬<�Y���*}��f���)��|����"|�}$�f�����8������|����*���
���;�f�Y�~�P¬;¡¢��� �.�A��z"����¦A|����f�f|��.ª ²f�A� �xüf�����f����¾�|ß¡��������f�)�.�5z*��} �)�.���P¬�Ã/µ��*}5���*�������f�ß��|��*��|��Y�`¶Aµ��*}.¾���z*�Y�K�Y�f�.��¦A¬<|�}5��|��f|���|��Y�/�
��zf�.����z*�Q���f�ß��|��*��|��Y�K|�}K�)�/}»|�¦��f�/��}��*��z���zG����|����x���G}»�f���/}"¶�L ��zf���������*�A�K��¡¥�.�f�Y��¦�¬-��¡���zf���A�f�)�.�.ªÂ÷[}»|��f¦Â��zf�vÀÁ�®
�*�����A�)|�¦��v¾ � �*|����s�8�����Y��¸U�P�{�����¥���f��|��K|��.����|����v�)�.�Y|�}�|����*}��.���v«G�<���A�)�<���{��zf�;�������*}�|�}»���A�»¸�¾)��zf|��f¸Á���*�v}�¬E}»���.�K¸S���YòA�Y�Sª

´

goodelle
Text Box
2

²$|�¦��f���<´fÿ`®��/}»�*�ß��|��f¦s®¥�.�)�*�x��|����*}{|��¼À`�f�.��¦A¬s���*��À`�*�Y��¦�¬BM�[�Y�~�P¬

ó����E¬������������.}��f�ß��}&�������Pò���|��~��«f���<«E¬Q�8�Y���*}�|��f¦s��zf����ò��Y��·�µ��f�f«*��|~�Y����|����*}&���/}»�f����|��f¦�¡¢����� ��z*|�}[�f�������.�x�.ª¥y{zf�/}»�"�f�f«f��|ß¸
�.����|����G}������[��|�}»���/�v������z*�<�Y�*����¡6��zf|~}����Y�8�����¥���*�������;|��*�Y���G�)�.��|��v�s��¯�*����òE|~�)�.�Q��|ß��z���zf|~}����Y�8�����.ª

� R r¼r�w�o wxqKmvÆ�Ï��¼t¼mvr�wYmvÇ

�¥â�ã ����(¥î&�=�&ì��&� ��2���	 �Áî¥é�
�ç�	»ç�[ì�ê�å'� 2 �`é�
 �¥ê 	�ç���è ê^ê^î¥éfå$í)ç ���&çné��'� �¼æAífì�� å$ífì ��� ��2"è ��3
äWå æ?ç�� �����<ç��=�¥ç�� �Q��æAí)ç���æ

 [�.¦��f�����Y���Y«*|��.���n¾��Â���Y��«G�.����¡[��zf�����Y�A��¦A|���ö��*}»��|����)���¼��¡[y6�.��z*�f������¦A¬�¥¤&®¥£^¤ ���.���b�f�*�)�.����zf�¼}��f�G�.��òE|~}»|����N��¡;£`ö
ó¼�E�A�f�Y¬A¾`z*��}K«8�Y�.� �P�{�����)�.��«?¬N¿¥�Y�����x���»¸�£ �����������-¡¢�f�*�f|��f¦-¡¢�A�Kz*|�}�¦A���A�)�*�����Q}»���*�f�Y�?�s}���|��8�Y�*�
���*�����f|ß��|��A�nª
 [�.¦��f�A; }
�f�������/������|���zv¿&£ |�}��Y¬)�x���x¸����Y�Y�f���������Y�*�Y��¦�¬��.}»��|�������|��A�Q��¡$¤&®&óÝ«G��}��.�s�.�"«8�.�f�f�.�v}»¬)}»���.��}{��|���z�ö�6� �)�YòE|~�x�/}YªÁ [�Y¦A�f�{|�}
|��Â��zf���f���)�x�.}�}���¡��K�)�)|�¡¢¬E|��*¦v���-¤[®¥ó �G�.�»¡¢�A�������*�x��}»|��"�*��������������|��*�Y���*�f�Kö�6A ��8�����.�<}»|��"�f�~����|��A���.���*��«f|���|���|��.}.ª�ôE�A���
��¡���zf�s���.}��.������z�¡¢�f�*�)�/��¥¤&®¥£^¤±��|����`|~}<��zE�*}����������/��zf�f�A���A¦�¬¼�������*}»|���|����-�*����zW¡¢���"�*}»��|��W��z*���)�.}�|�¦��W��¡��x�A�K���.���Y|����
�f���)�)�*�x��}�¡¢���¥¿&�Y�����x���»¸�£ �����������^ª

�¥âSá � � ((¥î&�=�&ì��#� ��2�ífë¥ç �������vå5éfå'�&ì����
����¸U£Áö���z*�������Y�>���Y�[z*��}{}��.�Y�f���/�s���*�f���Pü)|��������.��¬���·A¹�µ*¾ µAµ�µ;|��Q���*�)|ß��|��A�*���8¡¢�f�G�)|��*¦"¡¢��������zf���[����|��A�*���^ô)�x|��Y�G�x�;²f���*�*�f����|��A�
�����Y���?��|��E�f�<zf|~}{���/}»�/������z��A�Q�8�����.�{���)��|���|��.����|��A�v«*��}��.�Q���Q��zf��À�[®Ù�*�����A�)|�¦��vª

�¥â�� �Y�Áí)ç�	E(¥î=�&�&ì��#�
ö��?���.�fz*�A}5¦������?���/��}�������¡¢�f�*�f} ����£`����¡�ª��;���;��¡8��z*�¥÷¥�f|�ò��.��}�|ß��¬"��¡8[�Y�~�P�{��������£Á����¡�ª �;���;�{��} ���f�A�)¸S�A�)��|����G���f}��f«8�Y���?�������x�
������zf|~}��f�������.�x�.ª

! O q�mvu¥Ï.t W$wYq�m
ö��¼�x�A�*�x���*}�|��A�n¾)�f�.� ���.��zf�f�A���A¦�¬����f�f���A�A��zf�.}�z*�PòA��«8�Y�.�¼�)|�}��x��òA�Y���.��|���¡¢��� � �f�Y�G�x¬B6PòA��������¦A��}��Y����|��f¦���¡5}»�/�x�A�*�E¸U���.ò��Y�^���.��¸�A��¬W���*�N�x�A�K�*|����Y�K���)��|���|��.����|����*}�|��G�x���*�)|��f¦Â���E�����������*}�¡¢�A��������|����*}����*���*������¸S���Y�����f�f|��f¦*ª-y{zf�Q«8�.}»����ò��Y�������`���.}��f�����A}
���.�A}»�*���/��«E¬K�Y�f�.��¦A¬BM��)�.���P¬����Y���¥��´*ª�Ã Lý���/�)�*�x��|������*}�|��*¦"�f�����;���.�����f�f|��f¦Gª$¤&��}��*¾E�"·)ª ¶�L ���/�)�*����|��A�����A}Á����z*|��.ò��.�K��zf�.�

º

goodelle
Text Box
3

�Y���"«*|��f|��f¦��f������¸U���.�����f�f|��f¦K���*��¡¢��� � �f�Y�*�Y¬B6Pò��A�ß����¦A�&}��.����|��*¦���¡6���Y������¬��E��zf|~}{�xüf���K�*���;���~}»������z*|��.ò��.�s��zf�;�������/}��{�8�����.�¨ú�Y�f�.��¦A¬�6P��|����/©��x�A�*}»�*�K�f��|����n¾
y{zf|~}��G��}»�Q¥¤[®¥£^¤Õ�f�������/���s¡¢�A�s��z*�Â£`ö��{��}s��� �xüf�x|���|��f¦����*�
�xü)zf|�����������|��f¦����fò��Y�?���f���¼|��ý���.}��.������z
�x�A���~��«8��������|��A�n¾

¦A���A�)�*�����K}»���G�)�Y�?�<�xü)zf�A�»������|����Â���v����zf|��YòA�����.}��f����}<���*��|��*�)�*}»����¬Â�Y�?�A�G�.������|����Â�����*�*�Â���/��zf�f������¦A¬v�������*}»¡¢�Y�;�*����z*};«8����z
¡¢�A�{��zf�?}»�;���.}��f�ß��}���}{���Y���2��}�¡¢�A�{��zf�;������|��*�.�Q¦������)�*�����;}����*�)�.�A��}¥�x�A��|��f¦��A�)����¡$��zf�<�f�������/�����

ÔÕÈ���È¥p È&mvu�È#W
ø�Ãxù�³`ª���zG���E�����*���*|>¾Á£5ª��;�A���E�����A¾`õ"ª`ó��?�A�f�Y¬A¾/��ª`£ �����.��¾/��ª`£`�)������}��{���"¬����*�Nñ¯ª ñ��A�f¦*¾���y{zf�¼À`���.��¦A|��f¦-£5�����.�

����|�}�|�};|��WÀ`�"«8�.�*�)�.�W£`���)�x�/}�}�����}Yÿ&ñ z*���K�����-�W¨ú£5�E�A��©;�������f|����.��&���/§��Q_ m	�]]�
7k \Ya� m�����m����,k fh]`_������=_����5k j]��:j��5_�]��
g7\�
 �,b7\Bj!��]�� k"�#�`m�_
[$�&%]�
'
8]�
&�,b(� j])�*� +��,�-�5[$�$. /1032�¾*�f�nª2Ã>��¶�¸�Ã/½�µ*¾ �¥��òA�Y��«G�.�&·�µ�µ*Ã�ª

ø ·Pù ��ª*£Á�)�»����}������"¬�¾f³Áª���z*���E�����*���f|S¾���ª8��zf�A|>¾54�ª*[zf|��������2¾8÷"ª*&|���|��S¾G£5ªB�;�A���E�����A¾���ª*³n�.��¾,D*ª*£ ������¾f¤"ª���z*���»���.�ú���.��¾*£5ª
À`�����Y��ò��Y�A¾�õ"ª^ó¼�E���f�.¬�¾!��ª^£ �����Y�Õ���*��ñ¯ª^ñ-���f¦G¾{��£5�����Y��¸U£5�.�»¡¢�A�������G�x�;y2�����)�Y¸S��ð�}[|��-ôE�/�x���G�Â³n�.ò��.�5ó��Y������¬v�*}»�/�
«E¬Q���v¤[®¥óv¸�³n|�����®�ö»ôG� ¤&����z*|ß���.�����f����¾ §�|��6�Vm7�]`_-�87�g�_�]9��m����:�5j�k \Ya�¾G®¥���K|6ó¼�Y��z*��� ���G��Þ��A« �����P¬E«f|����S¾f�.�f}.ª�¾*�f�nª
·)ÃAÃx¸�·�·�¶f¾ �¥�Y�;4`������ÿ��;���E���Y��¤&�.���)�.�K|~�A6�£`���Y�E�f�±£Á�f«f��|�}�zf�Y��}.¾fó��P¬Q·�µAµA·fª

ø ´�ù ��ªE£ �����Y�v¾A®<ªE®¥��«f«*��z2¾Aõ�ª?ó¼�E�A�f�Y¬A¾?£5ªY�;�����?�����¥���*� ��ª?£`�)�����A}»�{����¬�¾2��&�/}»|�¦���ô)�*���Y�; [�)��|���|��.����|��A����¡2ÀÁ�"«8�.�f�)�/�
ó¼�.�K�A��¬�òE|��¼������¼®��Y�����*�f|��*¦*¾ §<�Q_�m��]]�
�k \Ya�Gm��Ij!��]9=5m7k \Zj>��m7\��`]`_]`\��] m�\@?+g7\Ca�Bg aH]����>��m����,k f]:_��4g�\:
BABmAm7fC���`m�_
[$�&%]�
'
8]�
<�,b(� j])�*�4g�\:
6� m�� jD7�g7_�] g�\:
E��m����,k f]:_��F�`m7_ [$�&%]�
'
8]�
<�Zb(� j]��>�G+H?I��A^[J�1KL�M�INO��[J�'2P¾�·�µ�µ?·)¾5�f�
·�½�¸�´Y�)¾
DA�f�f�"·�µAµA·fª

ø º�ù�£5ª!�;�����E������¾ ��ªn£Á�)�»����}������"¬¼���*��õ"ª6ó¼�E���f�.¬�¾���ÀÁ�f�Y��¦�¬¼ó¼�)�)�.��|��f¦v��¡{�v£`���E�Y�.}�}»�A�;���A����÷&}�|��*¦¼ô)¬?�*���*}�¬)}����*����¡
ó¼�.�K�A��¬Q¿¥|��Y��������z?¬s÷[}»|��f¦I�<����«f���;���*� ��zf�A}��<ó¼�)�)�Y�S¾ §s��®¥À�ô)yÙy�®{¸Uµ?·P¸�µ�µ?·)¾A²*�Y«f���*����¬Q·�µ�µ?·)ª

ø ¹Pù ��ªP£ �����Y�v¾�®<ª�®¥��«f«G��zn¾Põ"ª�ó¼�E�A�f�Y¬A¾P£5ª>�;�����E�����`���G�@��ªP£`�)������}��{���"¬A¾G��£5�����.�6 [�)��|���|��/����|��A����¡GÀÁ�"«8�.�f�f�.�"ôE¬)}»���.��}
òE|����������®��Y�����*�f|��*¦*¾ §���ö�y�¸»���Á¸�µA·P¸�µfÃAÃ�¾ ���Y����¦�|~��ö��*}���|ß���)���<��¡5y6�.��z*�f������¦A¬�¾)²f�.«nªG·�µAµA·

ø ¶�ù ��ª.£Á�)�»����}������"¬A¾ ��ªP��z*��|S¾>DGª �[ª.£ ������¾Yõ�ª/ó¼�E�A�f�Y¬A¾/¤"ª���z*���»���Y�>���Y�Á���*�<£5ª.ÀÁ�����Y��ò��.��¾*��ôE¬)}����Y�Ù���.ò��.���8�����.�»¸U�G�.�»¡¢�A�������*�x�
�������f�x¸U��ð^}`|��s�Y��«G�/�f�)�.��}»¬)}»���Y��}Á�*}»|��f¦�ò���������¦��¥���*�K¡¢��� � �f�Y�*�Y¬�}��.����|��f¦"��¡^��ð8¸U��z*|��s«*�*}»�/}Á���*�����Y������¬�¾ §>�Q_ m	�]]�
7k \Ya�m�� jP�B]8Q`\Bj]`_ \^g7j�kem7\,g�fR�Zb����Bm(� kP�S� m�\G�,b(� j])�T�Zb7\ZjP�B]3� k"�&+!Q��L�5�$. /U�2�¾f�f�2ªG·�·A¹P¸�·�´�µ*¾E ��x����«8�Y�&·�µ�µ?·)ª

øJ�/ù�®<ª�®¥��«*«*��zÂ���*� ��ª8£ �����Y�v¾���[�����s®¥�Y�����f�*|��f¦s¡¢���;&�/}»|�¦���ô)�*���Y�K [�)��|���|��/����|��A����¡ÁÀÁ�?«8�.�*�)�.�¼ó¼�.������¬vôE¬)}»���.��}.¾ §
��|����`���f�G�/���;|��W��}��G�/�x|~��� |~}�}��f�K��¡Á��zf�9�>�WVXA�_�g�\Y�:g1�:jlkem�\Y��k \ [$�&%]�
'
8]�
@��m�����5jlk \Ca��Zb(� j]��>��¾nò��A�>ªn·f¾ �¥�Gª2·)¾2ó��P¬·�µAµ�´*ª

ø ½�ù"ô�ª�ô)��|��f|�òP�A}����n¾�DGª �[ª`£ ���������*�Nõ"ª`ó¼�E���*�Y¬�¾K�����A�"«f|��f|��f¦W[�����W®��Y�����f�f|��f¦����*�Nõ ��������¦��>6Â²f��� � �f�.�*�x¬�ôf�Y����|��f¦W��¡ôE�/�x���G��³n�.ò��.�{ó��Y������¬W¡¢����À`�f�.��¦A¬�®��.�)�G����|���� |�� ÀÁ�"«8�.�f�)�/�NôE¬)}»���.��}.¾ §Z�Q_�m��]]�
7k \Ca�� m��Gj!��]\[�k _�� j8Q \Zj]:_ \,g�jlkem�\,g�f
]�m7__^��`�Bm�� m7\ [$� %]�
1
H]�
a�,b(� j])�*� ��m	
H]3� k a8\E+e[J�W�IN'dS[J�I. /�U�2�¾G�f�nªG¹Y�/¸�¶A·)¾)ôE�.�)���.�"«8�Y�[·�µ�µA·fª

ø F�ù�®<ª^Þ{���*�������/¾�ó�ª�ÀÁ�E�*���E¬��A�*���*¦*¾Z��ª^£Á�)�»����}������"¬�¾�®<ª^®¥��«f«*��z2¾nó�ª^Þ��������E��|~}»z*�*���n¾8õ"ª^ó¼�E�A�f�Y¬����*� ��ª^£ �����Y�Ð��¤&�
¤&�.�x�/}�}$«*�A}»�/�"À`�*�Y��¦�¬<ó¼�)�)�Y�?¡¢�A�6��zf�{[�������G����z����G�"ó¼�.�K�A��¬<¿&|��.��������zE¬;��¡G¿[£Á³n¸U£� ó�|��Y���?������zf|ß���.�x���f���`|���y6��|����������
²f�������.���A����¨>y�®�ö�®¥ÀÁóÂÀ�©�¾ §�y2�/��zf�f|~�Y���n®��Y�8����� ��ö�y�¸����Á¸�µA·�¸U´?¹)¾ ���Y����¦�|~��ö��*}���|ß���)���<��¡5y6�.��z*�f������¦A¬�¾5D��*�f��·�µ�µ?·)ª

ø�Ã.µ�ù DGª �[ª8£ ������¾8õ"ª^ó¼�E���f�.¬�¾!��ª�£ �����Y�Õ���G� ��ªn��zf��|S¾���ÀÁ�f�Y��¦�¬�ó¼|��*|���|��.����|��A�Â��¡��Q£Á|��8�Y��|��f�.��£`���E�Y�.}�}»�A�&÷&}�|��f¦Q��³n���
õ ��������¦��`£Á|��8�Y��|��*�.�"������z*��¾ §-�Q_�m��]]�
�k \Ya�Qm��$bdc7jP�e�=\Z\5�Bg7f��-� k f m��g�_8��m7\��`]`_]`\��]&m7\f�Zk a8\,g�fC���:�,b(� j])�*�/g�\:
>��m����:�5j]`_���¾
�f�nªG¶Y�/¸���´*¾ �¥��ò��.�"«8�Y�¥·�µAµA·fª

ø�Ã�ÃYù<¿"ª,4Á���f¦*¾ �Kª �;���G¾5¤"ª$óÂ��� � �*�Y��¾ �Kª`����|{���*�Zg5ª$¿&�n¾<��£5�����Y�����*��À`�*�Y��¦�¬Âö����*�A���K«?¬W³n�E�A��y2�����G}�¡¢�A��������|��A�*}.¾ §]�m7__^��`�Bm�� m�\Z��m����,k f]:_���g�\:
hNM��]:_�g7j�k \Ya\�,b(� j])�*�#�`m7_e?�m7i�Vm�7�]:_�¾8|����Y�������f�G����|����¼��|���z6�#g7_�g�f f]`fj�=__���Ck j]��`jD�5_�]Eg7\:

��m����,k f g�jlkem�\;AB]����C\BkHk)�B]��a+!�R�>��A8. /1032�¾8ôE�.�)���.�"«8�Y�[·�µ�µfÃAª

ø�Ã/·�ù<®�ª ����ò?|��*�f�������»���n¾E¿�ªY4Á���f¦G¾�D*ªf¤&���������>¾*�[ª:g�z*���f¦����G� �Kª �;���G¾ ��ó¼|��f|��"�f� ®¥�Y¦�|~}»���Y�{ö��*}»�����*�x��|����¼ôE� � �f�.�*�x��£Á���A«)¸���Y�vÿ ®��YòE|~}»|���|��f¦K [�)��|������^���)�)� ���.�f�Y������|��A��¡¢����¥¤ �;}Y¾ §f� _�m	�]]�
7k \Ca�� m��=jP�B]�Q \Bj]:_ \,g7j�kem7\^g7fY�Vg7_ g7f f]:f�g7\�
 d k"� j�_ kH%��5j]�

�Q_�m��]3��� k \Yaa�Zb����Bm(� kP�S��¾�ô)���v²f�����G�x|~}��Y�*¾)¤¥�f��|��>¾G·�µ�µ*Ã�ª

ø�Ã.´�ù<¿"ªS4Á���*¦*¾*®<ª�����òE|��*�*�������»���2¾ �Kª �;���*¾ �Kª8����|2���*�Gg$ª*¿&�n¾Á��À ü)�f����|���|��f¦�ôf��zf�.�)�*����ô)���A���E}�¡¢�A�¥®¥�����x¸» [�)��|������2£5�����Y��¸
ó¼|��f|��"�f� ôE��¡û���������"£Á|��8�Y��|��f|��*¦*¾ §l] m�__^(�_�Bm�� m�\i��m���^k f]`_��Ig7\�
hNM�B]`_ g7j�k \Ya9�Zb(� j]��>�O�`m7_F?+m�7B�#m�7�]:_>U�/1/�UA¾^|����x���f¸
���f�*�x��|����v��|���zh�Vg7_ g7f f]:fR�=_����5k j]��:j��5_�]Xg7\�
m��m����,k f g�jlkem�\;AB]����C\BkHk)�B]��a+!�R�>��A8. /�U)2�¾8ôE�.�)���.�"«8�Y�[·�µ�µA·fª

ø�ÃYº�ù<¿"ª#4Á���f¦*¾ �Kª �;���*¾&�[ªÁ³n�.�f�f¦G¾{®�ª ����òE|��G�f�������»���N���G� ¿"ªÁñ-�n¾��� [� ¤[��zf|��.òE|��f¦�Þ{�������*�x�/�N£5�����Y�������G}»�f���)��|��A�
|��
ôE��¡û���������v£`|��8�Y��|��f�/�N³2�E���*}.¾ §Z� _�m	�]]�
7k \Ca�� m��4j!��]aQ`\Bj]`_ \^g7j�kem7\,g�fn��m7\	�`]:_�]:\:�] m�\o��m����,k f]:_����F�=_ jp���5k j]��:j��5_]�g7\:

�Zb7\ZjP�B]3� k"�#�`m7_S[$� %]�
1
H]�
&�,b(� j])�*� +��j�e�5[J�'2fU�/1/U�¾8�f�nªG·fÃ.µ�¸��E¾f �������«8�Y�&·�µ�µA·fª

¹

goodelle
Text Box
4

ø�Ã/¹�ù<�ªP²*���2¾P¿"ª)4Á���f¦*¾ �Kª �;���&���*�<®<ª(g�z*���G¾G��¤¥�"ÀÁòP�����G����|����;��¡*&|�ð8�.���.�?�6Þ������*��z�£`���.�)|~��������}8¡¢���$³n���{¸U�G�����Y�nÀÁ�"«8�.�f�)�/�
£`���)�x�/}�}����/¾ §h��m m�f#�,�Ck �L���2¾fy6���E¬��G¾CD?���G���n¾f¤&�f��|��6·�µ�µA·fª

ø�Ã.¶�ù<¿"ª 4Á���f¦G¾�®�ª ����òE|��*�*�������»���2¾ �Kª �;�������G� ��ª`y{zf�.��«*�����n¾���£5�����.�»¸�£5�Y��¡¢���������*�Y�Ky6���A�)�x¸U��ð^}�¡¢���sÀÁ�f�Y��¦�¬?¸�À'9s�x|��Y�?�
¤¥����zf|����/�����*���/}Yÿ5¤��[�*���A������|�òA�&ô?���*�f¬�¾ §f�Q_�m��]]�
�k \Ya�
m��=j!��]�Q \Zj]:_ \,g�jlkem�\,g�fM��m7\��`]`_]`\��] m�\ �'m�����5j]:_QdE]�� k a8\<+PQ�I� d�2
Ud/'/�UA¾G�f�2ªnÃ>��º�¸�Ã>�7F*¾?ôE�.�)���.�"«8�Y�[·�µ�µ?·)ª

ø�Ã>�Pù ��ª*��zf�A|^���*�Q¤�ªG��z*���»���.�ú���.��¾5��À�9s�x|��Y�?��ö��G}������*�x��|�����³n�YòA�Y�n [�)��|���|��/����|��A�Qó¼�Y��zf�)�)�A���A¦�¬�¡¢���{³n���{¸�£5�����Y�ÁÀÁ�"«8�.�f�)�/�
ôE¬)}»���Y��}.¾ §<�Q_�m��]]�
7k \Ca��Gm`��jP�B]>Q`\Bj]`_ \^g7j�kem7\^g7f �,b����Bm(� kP�S� m7\ �,b(� j])� �,b7\Bj!��]�� k"�m+!Q��L�5��� /10�2�¾$�f�nª`Ã.ºC�P¸�ÃP¹�·)¾6 ��x���A«G�.�
·�µAµfÃAª

ø�Ã.½�ù ��ª���zf��|2���*�¼¤�ª^��z*�������.�ú���.��¾`��¿¥|��Y��������zf|��.�����8�����.�¥���)��|���|��.����|�����¡¢���[ô)�E�(¨ú}�¬E}»���.�K¸S�A�)¸U��z*|��G©���zf�����f¦Az���ó- ;ôs���.��z)¸
�f�A���A¦�¬s}��Y����|��f¦*¾ § ��ö�y�¸����Á¸�µA·�¸UµA´f¾Ay6�.��z*�f|��.���n®��.�G�A�»�¥|������Y�A��¦A|���y2�/��zn¾G·�µAµA·fª

ø�Ã F�ù<¤"ª^&|���|��S¾�4�ª^&z*|������A�n¾���ªn��zf��| ���*�Â¤"ªn��zG���»���Y�>���Y�A¾���¤¥�� K¨ ��©[ôE�*�f�f��¬¼õ ��������¦A�K¤[}�}�|�¦��f���Y�?�;¤¥��¦�����|���zf� ¡¢�A��³2���{¸
À`�*�Y��¦�¬�ôE�Y��|�������¬������f�*�.�����.�v��ó� ;ôsó¼�)�)�*���/}����*���K¿¥�.�f��|~}»��|~�&À üE���Y�*}�|��A������¤&�Y¬)�x��|���[������²6�������������fzG}Y¾ §f�Q_ m	�]]�
7c
k \Ya�@m���Q [�[�[��m�����5j]:_n�^m��:ke]`j�b>�=\B\L�Bg7f��Zb����Bm(� kP�S� m�\��R?W��Q&+PQ3���R?W��Q5. /b�2P¾*�f�nªnÃ7��´�¸�Ã>��Ff¾?²f�Y«*���*����¬�·�µ�µA´fª

ø ·�µ�ù<®�ª ����òE|��*�*�������»���2¾2¿�ªR4Á���f¦*¾�DGª ¤&���������>¾5�[ª g8z*���f¦¼���*� �Kª �;���G¾&��ó�|��f|��"�*�ï®��.¦�|~}����Y�<ö��*}»�����*�x��|�����ôE� � �f�.�*�x|��f¦v���®��/�)�*�x��®��.¦�|~}����Y�ÁôE�*|�����}5|��� [�)�»¸» &¡û¸» [���)�.�6ö�}�}��f�¥ôE�f�8�Y��}��.���~���5¤¥����zf|ß���.�x���f���.}.¾ §F�Q_ m	�]]�
7k \Ya�=m��#jP�B]JQ [�[�[A�_�g7\5�:g1�:jlkem�\Y�m7\E��m����:�5j]`_���¾fõ �A�>ªG¹A·)¾)ö�}�}»�*�KÃA¾)�f�nªfº�¸�·�µf¾5D?���E�*����¬�·�µAµ�´*ª
ø ·)ÃYù ��ª)��zf��|8���*��¤"ª)��zG���»���Y�>���Y�A¾6��¿&¤[·�y¥ô)�ÿ?¿&|��.��������zf|~�Y���)��|����[}����A�����)|~}»����|�«f�f��|�����¡¢�����f��������¸U����� �G�����Y����ó� ;ôKõ[³$ôEö�¾ §
�Q_�m��]]�
�k \Bk a�Gm��Ij!��] Q`\Bj]`_ \^g7j�kem7\,g�f �Zb����Bm(� kP�S� m�\ ?+m�7 �#m�7�]:_E[Qf]��:jl_�m�\BkH���Gg7\�
 dE]3� k a8*¾$�f�nª$·�µY�P¸�·fÃ/·)¾2ô)�Y�)���Y�"«8�Y�·�µAµA·fª

ø ·�·�ù ��ª2��zf�A| ���*��¤�ª6��z*���»���.�ú���.��¾¥��£^¤�¸`g^ô)¤ ¨ú£5�����Y�;¤¥�{����� g8�.���vôE���A����¤¥��¦��A��|���zf�s©xÿ[¤ ¦������fz�«*��}��.�¼��|��K|��f¦¼���G����¬E}�|~}
¡¢�����f�������������{¸S�8�����Y�{��ó- ;ô�õ[³$ôEö�¾ § �Q_�m��]]�
�k \Ya� m`�=j!��]�Q \Bj]:_ \,g7j�kem7\^g7fI]�m7__^��`�Bm�� m�\9�Vm�7�]:_ g7\�
hA�kP�Xk \Ca V m	
H]`f k \Ya�
NM�,j�kP�Xk	�Ag�jlkem�\ g�\:
 �,kP�>�5fhg7j�kem7\Z+H�R�FAjV@N$��� /U�2�¾*�f�2ªnÃ>��½�¸�Ã.½Y�)¾E ��x����«8�Y�&·�µ�µ?·)ª

ø ·�´�ù ��ª�£ �����.�(���G�K®�ª�®¥��«*«*��zn¾2��[�.}�|�¦A��ôE�G���x�[[�f��|��K|��.����|����K��¡^À`��«G�/�f�)�.��ó¼�.������¬K������zf�¥ôE¬)}»���.��}5òE|~�<���������f|����.�.¾ §
�Q_�m��]]�
�k \Ya m`�&j!��]8�,k�
HjP� �=\B\L�Bg7f� k a(�f�#]`_!�`m�_3��g�\:�]=[$�&%]�
1
8]�
 ��m����:�5j�k \Ya@] m�__^(�_��m��8¾)�f�2ª5��F�¸�½fÃ�¾?ôE�Y�)���Y��«G�.�{·�µ�µ�µ*ª

ø ·�º�ù<y{z*�<ô)|����f���/ô)�.���~����¸U¤&��� £5�����.��ó¼�)�)�.��|��f¦�£`�������/���/¾L�Cj�j ��� K1KL7 7 7��]]������ �S�EkH�����]�
��(K�� � _ k \YaY]:\:%�K�Bm�7�]:_ K
ø ·�¹�ù<�ª^³n|��-���*�-�[ªnôEòA�Y�*}�}����n¾���£5�����.�������*}��f���)��|��A��ÀÁ}»��|�������|��A�Â|��W��ó� ;ô�õ[³6ô)ö;��zf|��*}.¾ §G�Q_�m��]]�
�k \Ya�Im`�EjP�B]FQ�[�[�[
=5m��5_ \^g7f+m`�-�^m7f kH
7c �Zj g7j]\� k _����5k j���¾*õ ���Sª*·�F*¾ �¥�Gªf¶f¾f�f�2ª*¶�¶A´�¸�¶Y��µ*¾HDA�f�f��ÃAF8F�ºGª

¶

goodelle
Text Box
5

System Level Power-Performance Trade-Offs in Embedded
Systems Using Voltage and Frequency Scaling of Off-Chip

Buses and Memory

Kiran Puttaswamy
�
, Kyu-Won Choi

�
, Jun Cheol Park

�
,

Vincent J. Mooney III
�
, Abhijit Chatterjee

�
and Peeter Ellervee

�

�
Center for Research in Embedded Systems and Technology�����

School of Electrical and Computer Engineering
Georgia Institute of Technology

{kiranp, kwchoi, jcpark, mooney, chat}@ece.gatech.edu�
Tallinn Technical University

lrv@cc.ttu.ee

ABSTRACT
In embedded systems, off-chip buses and memory (i.e., L2 mem-
ory as opposed to the L1 memory which is usually on-chip cache)
consume significant power, often more than the processor itself. In
this paper, for the case of an embedded system with one proces-
sor chip and one memory chip, we propose frequency and voltage
scaling of the off-chip buses and the memory chip and use a known
micro-architectural enhancement called a store buffer to reduce the
resulting impact on execution time. Our benchmarks show a sys-
tem (processor + off-chip bus + off-chip memory) power savings of
28% to 36%, an energy savings of 13% to 35%, all while increas-
ing the execution time in the range of 1% to 29%. Previous work
in power-aware computing has focused on frequency and voltage
scaling of the processors or selective power-down of sub-sets of
off-chip memory chips. This paper quantitatively explores volt-
age/frequency scaling of off-chip buses and memory as a means
of trading off performance for power/energy at the system level in
embedded systems.

Keywords
Voltage/Frequency Scaling, Power-Performance Trade-offs, Em-
bedded Systems, Design Space.

1. INTRODUCTION
A typical embedded system consists of at least three main com-

ponents: a processor (often with L1 cache), an off-chip memory
(called L2 memory) and an off-chip bus connecting the processor
and memory. The off-chip components, being highly capacitive,
may consume as much or more power than the processor. This sug-
gests that we can gain significant reductions in power and energy
by reducing the off-chip voltage and frequency. However, power
reduction from voltage (and corresponding frequency) reduction

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02, October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

could be compromised by an increase in execution time, thus re-
sulting in overall increase in energy dissipation (note that the in-
crease in execution time is due to increased memory access time
and is a function of the cache misses). We demonstrate how the per-
formance impact of voltage and frequency scaling can be reduced
by implementing a known micro-architectural technique called a
store buffer. While our approach can apply to dynamic voltage scal-
ing, this paper only shows the tradeoffs between statically setting
the off-chip bus and memory voltage at 3.3 Volts and frequency at
100 MHz versus 2 Volts and 50 MHz. As is evident from the above
description, it is necessary to have an integrated framework in or-
der to quantitatively explore the power-performance design space
at the system level. Specifically, the contribution of this paper is as
follows.

We have combined the techniques of frequency/voltage scaling
of off-chip buses and memory (circuit level technique) with a store
buffer (architectural technique) to realize reductions in both system
power and system energy dissipation with a negligible impact on
the execution time.

The rest of the paper is organized as follows: Section 2 discusses
the motivation for this work. Section 3 gives an overview of the
previous work. Section 4 describes the experimental infrastructure.
Section 5 discusses the methodology. Section 6 presents the results
and Section 7 concludes the paper.

2. MOTIVATION
In embedded systems, especially mobile applications, battery

life is a significant concern. It has been established that the battery
drains faster when power is drawn at a higher rate [1]. For example,
a battery which lasts for 1000 hours when drawing 10 milliamps
at 1.5 Volts will only last for 80 hours when drawing 100 mil-
liamps at the same voltage [1]. Also, an old battery discharges
faster than a new one. Currently, few hooks exist to trade-off per-
formance for power to prolong the battery life of an embedded
system. For example, when the user is executing a time-critical
application like real-time video-conferencing, he might decide to
operate at peak performance and high power. Or he might opt for
low performance and very low power when executing low priority
applications like checking e-mail. Or he might chose an intermedi-
ate power-performance point based on the existing battery capacity.
Note that turning off memory chips may not be possible because,
for example, video data might be stored in the memory and may

9

goodelle
Text Box
6

goodelle
Text Box
Appendix A:

µµ

On−Chip Data Paths AnalysisOn−Chip Cache AnalysisOff−Chip Bus Mem Analysis

Execution Time

Binary Translation

Toggle Rate (Activity) Generation

Functional Simulation (VCS)

RTL Description (Verilog)

ARM 9 Based System Architecture

Benchmark Programs (C/C++)

Energy Analysis

System Power Analysis

µ TSMC 0.25

Library

TSMC 0.25TSMC 0.25

Library Library

+

−

+

−

Figure 1: Experimental Infrastructure

need to be used. Also note that, as presented in this paper, this
is a static technique and happens at the beginning of the program
execution. We currently do not address dynamic (run-time) scal-
ing of voltage/frequency of off-chip memory. This paper presents
an approach that can allow the compiler and/or the user to decide
at which power-performance point to operate, e.g., based on the
knowledge of battery capacity and battery discharge pattern.

3. PREVIOUS WORK
There has been significant work in the field of voltage and fre-

quency scaling. Voltage scaling techniques have been investigated
at almost all levels of the design hierarchy from the system level to
the device level due to the quadratic effect on the switching power
dissipation. However, as the supply voltage becomes lower, the cir-
cuit delay increases and the performance degrades [2]. Techniques
to improve performance fall into three main categories: reducing
the threshold voltage to improve circuit speeds, introducing paral-
lelism into the architecture while using slower device speeds, and
using multiple supply voltages to choose the lowest supply voltage
for different circuit components that still satisfies the speed require-
ments. Our approach falls into the third category.

At the system/architecture level, a number of memory optimiza-
tion schemes for low power have been developed [3, 5]. Briefly,
those approaches can be categorized as follows: cache optimiza-
tion, memory access reduction (especially for off-chip memory),
memory sizing/structuring and memory-intensive voltage scaling.
Our work falls in the category of memory intensive voltage scal-
ing.

There has also been a lot of work on system level power anal-
ysis for software power dissipation. In [6], profiling hardware is
used to identify tightly coupled regions of code and dynamically
optimize the configuration of the microprocessor so as to mini-
mize performance penalty. Our work is similar to this approach
in the sense that we set the performance parameters, namely, volt-
age and frequency based on the requirements of the application.
However, note that ours is a static technique rather than a dynamic
technique. Also, there has been work on dynamically adjusting
the speeds (i.e., either lower the frequency or shutdown the unused

2

2.5

3

3.5

0

0.5

1

1.5

2

x 10
7

0

1

2

3

4

5

6

7

8

x 10
−3

E
ve

ra
ge

 P
ow

er
 (

W
)

Switching Frequency (Hz)

Vdd (W)

Average Power of Bus Line

Figure 2: Bus Power Dissipation Pattern

modules), whichever gives the best results [7]. At the technology
level, various techniques have been researched such as gating the
supply voltage to cache memories [14].

A similar framework to our power measurement infrastructure is
introduced in SimplePower [4]. SimplePower is based on a subset
of the Simplescalar Instruction Set Architecture. Currently, Sim-
plepower does not capture the energy consumed by the control unit
of the processor nor the clock generation nor the distribution net-
work [13]. On the other hand, our work more accurately mod-
els the specific RISC processor as the measurements are based on
cycle-accurate functional simulations and Register Transfer Level
hardware models used along with an actual technology library. An
additional aspect of our work is the inclusion of power models for
both off-chip memory [19] and the Printed Circuit Board bus.

4. EXPERIMENTAL INFRASTRUCTURE
We consider an embedded system which consists of a classic

five stage pipeline RISC processor core with 4 kilobytes of in-
struction cache, 4 kilobytes of data cache, a single off-chip syn-
chronous SRAM memory of size 0.5 Megabytes organized as 128K
X 4 bytes, and a bus interface consisting of a 32 bit address bus,
32 bit data bus and the read/write control signals between the pro-
cessor core and the SRAM memory.

Our experimental infrastructure (Figure 1) consists of four main
components: a C Compiler; MARS – obtained from the University
of Michigan – a cycle-accurate Verilog Model of a RISC processor
capable of running ARM instructions [12]; a power model for off-
chip buses; and a power model for memory.

We use the GNU-gcc ARM cross compiler version egcs-2.91.66.
For each benchmark we consider, we compile the benchmark to re-
locatable ARM assembly code using GNU-gcc ARM cross com-
piler. Then we use the GNU cross-assembler to generate a binary
executable targeted towards ARM architectures. Then we trans-
late the binary into an ascii format called VHX (Verilog HeX) [20]
which is suitable for being simulated on MARS using the Synop-
sys VCS simulator [8]. The simulation experiments are carried out
in two modes. In the first mode, the CPU core and off-chip buses
and memory are all operating at 100 MHz, a setup that is very sim-
ilar to a hardware setup we have in the Hewlett-Packard "Skiff"
Personal Server board [17] with a StrongARM SA-110 processor
and 16 megabytes of off-chip memory [18]. (Note that we model a
smaller off-chip memory of size 0.5 megabytes in accordance with
the smaller applications we consider.) We obtained the simulation

10

goodelle
Text Box
7

2

2.5

3

3.5

0

0.5

1

1.5

2

x 10
7

0

0.002

0.004

0.006

0.008

0.01

0.012

Vdd (V)

Average Power of SRAM Model

Switching Frequency (Hz)

A
ve

ra
g
e
 P

o
w

e
r

(W
)

Figure 3: Memory Power Dissipation Pattern

model for the off-chip memory from IDT Technologies, Inc. [15].
In the second mode, the processor core includes a Verilog descrip-
tion of a store buffer integrated into the core and interfaced to off-
chip buses and off-chip L2 memory operating at 50 MHz. In both
cases, using the set of benchmarks in Table 1, each benchmark is
simulated and switching activity is collected for the processor core,
off-chip buses and off-chip memory models. The switching activity
is fed to the power models of the core, off-chip buses and off-chip
memory along with the technology parameters of a TSMC 0.25 �
CMOS technology standard cell library from Leda Systems [9] to
obtain power and energy estimates.

4.1 On-chip Datapath Power Estimation
We use a synthesis based methodology for developing the power

models for the submodules belonging to the datapath (we consider
the datapath to consist of the fetch unit, decode unit, register file,
arithmetic logic unit, data cache access unit and writeback unit).
The synthesis infrastructure consists of two software tools from
Synopsys, Inc.: the Design Compiler and Power Compiler [8]. De-
sign Compiler generates the gate level netlist from the hardware de-
scription of the submodules, and Power Compiler generates power
estimates for each of the synthesized netlists. The Verilog RTL de-
scription is given as input to the Synopsys Design Compiler. The
output netlist is generated using a TSMC 0.25 � CMOS technology
standard cell library from LEDA Systems [9]. The technology de-
tails include features such as transistor width, transistor length, gate
capacitance, drain capacitance, transistor rise time and transistor
fall time. The TSMC 0.25 � standard cell library is characterized
for leakage power, thus enabling us to include both dynamic and
static power and energy in our analysis.

The synthesis process was guided by fixing the maximum delay
and maximum area. The maximum delay was set to 10 ns and the
maximum area was fixed to infinity so as to get the fastest imple-
mentation. In our case, the modules were synthesized to operate
at greater than or equal to 100 MHz (i.e., at less than or equal to a
10 ns cycle time).

We use Power Compiler from Synopsys to estimate the power of
on-chip components. The Power Compiler obtains the switching
activity of the various functional modules based on the simulation
of benchmarks on MARS. Then, Power Compiler annotates this
switching activity onto the synthesis environment and obtains esti-
mates of the dynamic and static power dissipation for the particular
technology chosen (in our case, TSMC 0.25 � CMOS technology).

32bits,50Mhz

64bits,100Mhz

32bits,50Mhz

256bits,100Mhz 32bits,50Mhz

Cache

Instruction

Cache
Data

CPU

Store
Buffer

Main Memory

96bits,100Mhz

Figure 4: System Level Block Diagram

Benchmark Size (bytes) Explanation

bubble 8131 Bubble Sort Program

factorial 6641 Factorial Program

fib 6815 Fibonacci Sequence Calculation

matmul 8058 Matrix Multiplication

sort_int 7241 Integer Array Sort

Table 1: Benchmarks

4.2 Off-chip Bus Power Analysis
We use Spectre simulation to obtain the power for off-chip buses.

The driver component is modeled by a series of inverters (buffers)
of increasing size and the model is designed using TSMC 0.25 �
CMOS process technology parameters. The parameters of TSMC
0.25 � process technology are available through MOSIS [11]. The
bus line capacitance values are obtained from actual measurement
on a PCB board using the Intel StrongARM processor [18]. The
details of the measurement procedure has been explained in [20].

The graph in Figure 2 describes the dependence of the power dis-
sipation on the switching frequency of the bus and also the power
supply voltage ����� . The power dissipation is found to decrease
as the switching frequency and the supply voltage are decreased.
(Switching frequency is how often a signal actually switches val-
ues. Clearly, switching frequency of a signal is data- or profile-
dependent, i.e., dependent on a particular benchmark and data.) As
the supply voltage decreases, the average power dissipation reduces
quadratically. As the switching frequency decreases, the average
power dissipation decreases almost linearly. Note that the simulta-
neous halving of both voltage and frequency results in cubic sav-
ings.

4.3 Memory Power Analysis
We use an analytical SRAM model [19] for the off-chip mem-

ory and cache power dissipation. For the off-chip memory power
model, we updated the analytical model [19] using the TSMC 0.25 �
process technology parameters. We use the switching activity from
simulations to obtain estimates for SRAM memory power dissipa-
tion. The variation of power for the memory with supply voltage
����� and the switching frequency is thus found.

The graph in Figure 3 describes the dependence of the power dis-
sipation of the memory with the power supply voltage ����� and the
switching frequency for a memory size of 0.5 megabytes (note that
switching activity period is the reciprocal of switching frequency).
As the supply voltage is decreased, the average power dissipation is
found to decrease quadratically. Also the memory delay was found

11

goodelle
Text Box
8

to double as we reduced the voltage from 3.3 Volts to 2 Volts, re-
ducing the maximum clocking frequency possible from 100 MHz
at 3.3 Volts to 50 MHz at 2 Volts.

For the on-chip cache power dissipation model, we use the same
SRAM model [19]. The model is combined with the capacitance
values obtained from the TSMC 0.25 � CMOS technology param-
eters. Note that the main difference between the off-chip memory
model and on-chip cache model is that the off-chip model has sig-
nificantly higher capacitance values (due to size) than the on-chip
model.

4.4 System Level Power/Energy Model
We define the sum total of the processor core power, bus power

and the memory hierarchy power as the system power ������� .

���������	��
��������� �� ��������� (1)

�
��� is the power dissipated by the processor core,
��� �� is the power dissipated by the off-chip buses,
� ����� is the power dissipated by the memory.

Also, we calculate the system energy � ����� for each benchmark
by multiplying the execution time collected by simulation and the
corresponding sysem power ������� .

� ����� ��� ������� � (2)

������� is the power dissipated by the system,
� is the total execution time of the benchmark.

5. METHODOLOGY
We now explain the method we use to explore voltage and fre-

quency scaling as a static technique for design space exploration in
terms of power versus performance trade-offs.

5.1 Voltage/Frequency Scaling
In particular, we analyze the case where we reduce the voltage

of the off-chip memory and off-chip buses from 3.3 Volts to 2 Volts
(note that our original system consists of the MARS [12] proces-
sor powered at 2.75 Volts with the memory buses and memory chip
powered at 3.3 Volts). The resulting increase in memory delay (it
doubles) is taken care of by reducing the off-chip bus and off-chip
memory frequency from 100 MHz to 50 MHz. Of course, reduc-
ing off-chip bus and off-chip memory frequency increases program
execution time in proportion to cache misses. We help offset this
effect by adding a store buffer to the processor model. The store
buffer helps to reduce cache miss penalties generated due to "store"
instructions (since the cache model follows a read-write allocation
policy, cache miss servicing takes up a significant amount of time).
On a cache miss on store, the processor stores the data into the store
buffer. The store buffer assumes the responsibility of flushing the
data into the main memory.

We achieve frequency scaling by simulating the off-chip com-
ponents at the lower frequency of 50 MHz. We achieve voltage
scaling by using the resulting switching activity with the reduced
voltage value of 2 Volts to calculate the off-chip bus and memory
power dissipation values.

5.2 Store Buffer Technique
Figure 4 shows an architectural description of the embedded sys-

tem with a store buffer included. Note that the store buffer is a
16 entry buffer. Stores to external memory are first placed in the
store buffer and subsequently taken out when the off-chip bus is

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

P
ow

er
 (

W
)

Power and Energy Savings

Power (Before)
Power (After)
Energy (Before)
Energy (After)

bubble factorial fib matmul sort−int

3.5

3

2.5

2

1.5

1

0.5

0

E
ne

rg
y

(m
J)

Figure 5: Power/Energy Saving Results

available. Thus, we reduce cache miss latency due to "store" in-
structions. The store buffer maintains synchronization with the on-
chip data cache as well as with the off-chip memory. We use the
Synopsys Power Compiler to estimate the additional power con-
sumed due to the addition of store buffer into the processor core.
Since we have integrated the description of the store buffer into
MARS, the new system level power dissipation includes the store
buffer overhead.

5.3 Design Space Exploration
In this section, we discuss the design space exploration of the

power-performance space using voltage and frequency scaling. The
Verilog model (MARS) is simulated in two modes. In the first
mode, processor, off-chip buses and off-chip memory operate at
100 MHz. In the second mode, the processor operates at 100 MHz
while the off-chip buses and off-chip memory operate at 50 MHz.
In both cases, the Power Compiler collects the switching activity
and uses the collected switching activity to give an estimate of dy-
namic and static power dissipation of all the modules within the
core. We also collect the switching activity of off-chip memory el-
ements and off-chip buses and feed the collected switching activity
information to the analytical models to obtain the power estimates
for off-chip bus and off-chip memory. We obtain the system level
power/energy estimates as explained in Section 4.4.

Our calculations do not include the extra overhead of multiple
supply voltage generation since we assume that the board already
has the multiple supply voltages needed. For example, the "Skiff"
Personnal Server Board from HP/Compaq [18] has 2 Volt, 3.3 Volt
and 5 Volt power supplies. Also, currently there are memory chips
from NEC Semiconductors where the chip component operates at
3.3 Volts and the I/O buffer component can operate at either 3.3 Volts
or 2.5 Volts [16]. For example, the memory chip � PD4442361 Syn-
chronous SRAM can operate at 3.3 Volt chip core voltage and either
3.3 Volt or 2.5 Volt I/O buffer voltage. The � PD4442361 is avail-
able in three speed grades of 133 MHz, 117 MHz and 100 MHz
with the corresponding access times of 6.5 ns, 7.5 ns and 8.5 ns [16].
Therefore, we think it is reasonable to assume that our system will
have at least three supply voltages readily available and that the
system memory chips are capable of operating at dual voltages.
The choice of frequency of off-chip buses and memory is currently
assumed to be made statically by a mechanical or electrical switch.

12

goodelle
Text Box
9

benchmark Executable size (kB) Dynamic instruction count Input data size Data cache accesses Data cache misses Data cache miss %

bubble 34.852 7503 50 integers array 1675 107 6.39

factorial 34.634 6033 1 integer 2006 250 12.46

fib 34.651 30602 1 integer 11840 262 2.21

matmul 34.857 21642 0.5 kB 7358 4916 66.81

sort_int 34.763 23171 0.5 kB 7808 104 1.33

Table 2: Execution Statistics for Various Benchmarks

Off-chip Bus, Memory at 100 MHz, 3.3 V Off-chip Bus, Memory at 50 MHz, 2 V % Improvement

Benchmark cpu+cache (W) bus (mW) L2 memory(mW) Total (W) cpu+cache(W) bus(mW) L2 memory(mW) Total (W)

bubble 1.24 301.64 1276.49 2.817 1.22 96.14 541.08 1.857 34.07

factorial 1.18 444.35 1236.96 2.861 1.15 93.16 797.08 2.040 28.69

fib 1.25 287.68 1228.23 2.766 1.25 92.50 516.06 1.859 32.79

matmul 1.07 637.48 1713.34 3.421 1.04 129.04 1143.51 2.313 32.39

sort_int 1.27 336.78 1485.92 3.093 1.27 111.91 604.11 1.986 35.79

Table 3: System Level Power Estimates

6. RESULTS
The benchmarks in Table 1 are chosen to be computationally

intensive. Also, the size of the data has been suitably modified
so as to generate a significant number of L1 cache misses as can
be seen from Table 2. For example, with matmul we increased
the array sizes so that the 4KB L1 data cache could not hold the
working set. Some of these benchmarks constitute the kernel of
many signal-processing algorithms.

Table 2 shows the dynamic instruction count, cache access and
miss statistics for the given benchmarks. Note that the final miss
rates are smaller than the average miss rates at the beginning/middle
of the execution of the program due to the temporal and spatial lo-
cality of the cache memories. Also note that the matmul bench-
mark has a very high miss rate. As a direct consequence of this,
this benchmark experiences high off-chip traffic. As we will see
later, benchmarks such as this, which need high off-chip band-
width, show correspondingly lower improvement in terms of en-
ergy by our technique (although they still benefit in terms of power)
as the power savings are nullified by the high increases in program
execution time.

Table 3 presents the results related to system level power. The
first three columns indicate the three components of power, namely,
core power dissipation, off-chip bus power dissipation and off-chip
memory power dissipation for the case where the MARS processor
core operates at 2.75 Volts and 100 MHz and the off-chip system
operates at 3.3 Volts and 100 MHz. The next three columns indi-
cate the same three components of power for the case where the
off-chip bus and memory operate at 2 Volts and 50 MHz while
the MARS processor core still runs at 2.75 Volts and 100 MHz.
The system level power estimate is obtained by adding up the core
power, bus power and the memory power as shown in the fifth and
ninth "Total(W)" columns in Table 3. Note that the proposed tech-
nique has reduced the power dissipation by an average of 32% on
the five benchmarks. Also note that the average power reduction
is almost uniform across all benchmarks irrespective of their exe-
cution characteristics like execution time and dynamic instruction
mix. This highlights the dominant effect of voltage and frequency
on the power dissipation.

Table 4 presents the statistics for the architectural and circuit
level design space exploration where execution time represents the
performance axis and system power represents the power axis. Note
that, as expected, matmul benchmark has a higher penalty in terms
of the execution time due to high off-chip traffic for loading and

storing the data arrays.
The energy column combines both the design space axes, namely

performance axis and the power axis and serves as a baseline for
analyzing power-performance trade-offs. The trade-off shown, for
example, the factorial benchmark, shows a performance penalty of
11.37% in return for a power reduction of 28.69% and an energy
reduction of 20.48%. All benchmarks show improvements in both
power and energy. However, as expected, the execution time in-
creases. This shows that our technique reduces both power and
energy by virtue of reducing the fraction of the off-chip bus and
memory power consumed, at a (possibly small) penalty in increased
execution time.

Figure 5 presents the overall results of the system level power
and system level energy. Our technique of static voltage/frequency
scaling combined with the store buffer is seen to reduce both power
and energy at the system level.

7. CONCLUSION AND FUTURE WORK
In conclusion, we have shown how a simple trick of cutting off-

chip voltage from 3.3 Volts to 2 Volts (note that this also cuts the
voltage for the processor I/O pad driver logic), together with the
enabled (due to extra latency available) reduction in frequency of
off-chip buses and memory, reduces both power and energy. The
basic point is that both the compiler and the programmer can take
advantage of smart architectural and memory hierarchy features,
which allow the reduction of power with some corresponding trade-
offs in terms of performance. For example, the choice of 100 MHz
versus 50 MHz for off-chip bus frequency could be made dynam-
ically programmable (e.g., by writing to a special on-chip register
or a memory-mapped location). In this case, then, code could be
written which operates at high performance and high power during
critical times, but scales down to lower performance and low power
during non-critical time periods. This paper lays the groundwork
for such a system where off-chip buses and memory and possibly
more peripherals have their power dissipations modulated either by
the user or by the compiler.

We will look at further hiding the load-instruction memory ac-
cess latency caused by slowing down the off-chip buses and off-
chip memory. We will explore other configurations for off-chip
memory and also other memory technologies (e.g., SDRAMs). We
will pursue making the voltage and frequency scaling dynamic.

13

goodelle
Text Box
10

Off-chip Bus, Memory at 100 MHz, 3.3 V Off-chip Bus, Memory at 50 MHz, 2 V Percent Change

Benchmark Execn Time (� s) Power (W) Energy (mJ) Execn Time (� s) Power (W) Energy (mJ) Execn Time increase (%) Energy decrease (%)

bubble 113.945 2.817 0.321 122.265 1.857 0.227 7.3 29.3

factorial 116.115 2.861 0.332 129.325 2.040 0.264 11.37 20.48

fib 456.795 2.766 1.263 463.245 1.859 0.861 1.4 31.83

matmul 924.735 3.421 3.164 1192.98 2.313 2.759 29.0 12.8

sort_int 296.425 3.093 0.917 300.265 1.986 0.596 1.29 35.0

Table 4: System Level Design Space Exploration

8. ACKNOWLEDGEMENTS
This research was funded by DARPA under contract number

F30602-00-2-0564. We also acknowledge donations received from
Cadence, Hewlett-Packard, Intel, LEDA Systems, Mentor Graph-
ics, Sun and Synopsys.

9. REFERENCES

[1] P. Horowitz and W. Hill, The Art of Electronics, Second
Edition, Cambridge University Press, England, 1989.

[2] A. Chandrakasan, S. Sheng, and R. Brodersen, "Low-power
CMOS digital design," IEEE Journal of Solid-State Circuits,
Vol. 27, April 1992.

[3] T. Ishihara and K. Asada, "A System Level Memory Power
Optimization Technique using Multiple Supply and
Threshold Voltages," Proceedings of Asia and South Pacific
Design Automation Conference, pp. 456-461, June 2001.

[4] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, "The
Design and Use of Simplepower: A cycle-Accurate Energy
Estimation Tool," Proceedings of 38th Design Automation
Conference, pp. 340-345, June 2000.

[5] L. Benini, A. Macii, E. Macii, and M. Poncino, "Synthesis of
Application-Specific Memories for Power Optimization in
Embedded Systems," Proceedings of 38th Design
Automation Conference, pp. 300-303, June 2000.

[6] A. Iyer and D. Marculescu, “Power Aware Microarchitecture
Resource Scaling,” Proceedings of Design Automation and
Test in Europe, pp. 190-196, March 2001.

[7] A. Acquaviva, L. Benini and B. Ricco, “An Adaptive
Algorithm for Low-Power Streaming Multimedia
Processing,” Proceedings of Design Automation and Test in
Europe, pp. 273-279, March 2001.

[8] Synopsys, Inc., Available HTTP: http://www.synopsys.com
[9] LEDA Systems, Inc., Available HTTP:

http://www.ledasys.com
[10] TSMC, "IP Services," Available HTTP:

http://www.tsmc.com/design/ip.html
[11] The MOSIS Service, Available HTTP: http://www.mosis.org
[12] The SimpleScalar-Arm Power Modeling Project,

http://www.eecs.umich.edu/~jringenb/power/
[13] The SimplePower Energy Estimation Tool,

http://www.cse.psu.edu/~mdl/SimplePower.html
[14] M. Powell, S. Yang, B. Falsafi, K. Roy and T. N. Vijaykumar,

“Gated � ��� : A Circuit Technique to Reduce Leakage in
Deep-Submicron Cache Memories,” Proceedings of the
International Symposium on Low Power Electronics and
Design, pp. 90-95, July 2000.

[15] IDT Technologies, Inc., Available HTTP:
http://www.idt.com/products/pages/ZBT_Verilog_p.html

[16] NEC Semiconductors, Inc., Available HTTP:
http://www.ic.nec.co.jp/memory/english/products/sram/ssram-
4m.html

[17] Hewlett-Packard, Inc., Available HTTP: http://www.hp.com
[18] HP Labs - Cambridge Research Laboratory Personal Server

Project, Available HTTP:
http://crl.research.compaq.com/projects/personalserver/personal-
server-spec.html

[19] D. Liu and C. Svensson, “Power Consumption Estimation in
CMOS VLSI Chips,” IEEE Journal of Solid-State Circuits,
Vol. 29, No. 6, pp. 663-670, June 1994.

[20] P. Korkmaz, K. Puttaswamy and V. Mooney, “Energy
modeling of a Processor core using Synopsys and of the
Memory Hierarchy using the Kamble and Ghose Model,”
Technical Report, CREST-TR-02-002, Georgia Institute of
Technology, Feb. 2002.

14

goodelle
Text Box
11

Combining Data Remapping and Voltage/Frequency Scaling of Second
Level Memory for Energy Reduction in Embedded Systems

Sudarshan K. Srinivasan, Jun Cheol Park and Vincent J. Mooney III
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA-30332
{darshan, jcpark, mooney}@ece.gatech.edu

Abstract

In this paper we show that the energy reductions obtained from
using two techniques, data remapping and voltage/frequency
scaling of off-chip bus and memory, combine to provide inter-
esting trade offs between energy, execution time and power.
Both methods aim to reduce the energy consumed by the mem-
ory subsystem. Data remapping is a fully automatic compile
time technique applicable to pointer-intensive dynamic appli-
cations. Voltage/frequency scaling of off-chip memory is a
technique applied at the hardware level. When combined to-
gether, energy reductions can be as high as 46% .The improve-
ments are verified in the context of two OLDEN pointer-centric
benchmarks, namely Perimeter and Health.

1 Introduction

In embedded systems, memory is a significant power/energy
sink, often consuming as much as half of the total
power/energy [2]. In this paper we focus on simultaneously
applying a hardware technique and a compile time technique
in order to obtain significant energy savings. Our target pro-
cessor is an ARM-like processor. The two methods we ap-
ply are data remapping (compile time technique) and volt-
age/frequency scaling of the off-chip bus and memory.

An embedded system usually consists at least of a processor
(including L1 cache), off-chip memory and off-chip bus. The
off-chip components are highly capacitive. This causes them
to consume close to half of the digital system power (where
digital system power is the power consumed by the processor
plus memory). Slowing down the off-chip memory by scaling
the voltage and frequency[19, 20, 15] can be used to reduce the
energy consumed by the off-chip memory. But slowing down
the off-chip memory will also reduce performance.

Data remapping[11, 10] is a compile time technique. It is
used to remapp the application’s data layout so that data el-
ements that are accessed contemporaneously are placed to-
gether in memory. Remapping improves spatial locality and
thus reduces cache misses. Cache misses are expensive in

terms of performance. Remapping leads to a reduction in the
execution time and energy.

The main drawback of the voltage/frequency scaling tech-
nique is the reduction in performance. Combining the two
techniques can increase the overall reduction in energy. Fur-
thermore, where execution time allocated is fixed, the combi-
nation of faster execution due to data remapping can offset the
slower execution time due to reduced clock frequency for off-
chip memory resulting in the same original execution time at
dramatically reduced power (and energy). Section 2 described
related work. Section 3 describes the experimental infrastruc-
ture used for estimating the power and energy of the system for
the before and after cases. Section 4 gives an overview of the
data remapping algorithm. Section 5 describes the method-
ology used for voltage and frequency scaling, and Section 6
gives our design space exploration. Section 7 describe the re-
sults obtained after applying the two methods in terms of en-
ergy savings, and Section 8 concludes the paper.

2 Related Work

A framework similar to our infrastructure is Simplescalar
ARM. It is a framework for power and performance analysis.
Another is SimplePower[14] which implements a subset of the
instructions supported by Simplescalar.

Unlike Simplescalar, our model (MARS, introduced later)
is at the RTL (Register Transfer Level) level and thus is more
accurate.

With respect to hardware techniques there is a lot of
work going on to gate supply voltage to cache memories[6,
12], dynamically adjust the frequency or shutdown unused
modules[4].

Related work in data reorganization[7] propose automated
field re-ordering that assigns temporally related fields to adja-
cent memory locations. But they offer only partial solutions
as they do not consider fields between different instances of a
record.

16

goodelle
Text Box
12

goodelle
Text Box
Appendix B:

Benchmark Program(C/C++)

Binary Translation

ARM9 Based System Architecture

RTL Description(Verilog)

Toggle Rate(Activity) Generation

Functional Simulation(VCS) Execution Time

System Power Analysis

Energy Analysis

L1 and L2 cachesOff−chip bus analysis

Tricepts

Off−chip data path analysis

Figure 1: Experimental Infrastructure

3 Experimental Setup

In this section we describe the experimental setup used to sim-
ulate and evaluate the combined techniques of data remapping
and voltage/frequency scaling.

The core of the simulation environment is MARS (Michigan
Arm Simulator, obtained from University of Michigan)[16],
capable of running ARM instructions. The power of the core
processor can be estimated using Synopsys Power Compiler.
The switching activity of the various nets is collected via sim-
ulation. The MARS model was synthesized using TSMC
.25u library[18]. Using Synopsys Power Compiler[17], power
models of the synthesized MARS model were created. The
processor power was estimated using the power models and
the switching activity of the nets at 2.75 volts.

The remapping benchmarks were implemented using
TRIMARAN, a compiler framework (which includes the
TRICEPS[8] ARM code generator and smart memory and
cache hierarchy simulator (SMACHS)[21]. The execution
statistics from TRIMARAN are used to estimate the power of
the memory subsystem.

The model used has an L1 on-chip cache and L2 off-chip
cache. To estimate the energy of the primary and secondary
cache we assume an SRAM model. The Kamble and Ghose
approach is used for energy estimation[9]. Execution statis-
tics such as cache requests, read hits and misses, write hits
and misses, execution cycles for both L1 and L2 cache are
required. These execution statistics were obtained from sim-
ulations using SMACHS. Also, information about the cache
configuration such as cache size, block size and tag size are
required. One of the main disadvantages of the Kamble and

Ghose method is that it does not model the I/O pads. An-
other disadvantage is that the model only accounts for dy-
namic power dissipation. This approximation (not including
static/leakage power) is valid with respect to 0.25u technology
but may not be valid for smaller(e.g., 0.09u) technologies.

The off-chip bus power is estimated using Spectre simula-
tion. The driver component is modeled by a series of inverters.
The model is designed using 0.25u TSMC library. The bus line
capacitance values are obtained from actual measurements of
a PCB with an Intel StrongARM1110 processor.

The total system power is estimated using the following ap-
proach. The energy for the L1 and L2 cache is obtained di-
rectly using the Kamble and Ghose model[15, 9]. The pro-
cessor power is obtained from the Synopsys Power Compiler.
Processor power is multiplied with the execution time to ob-
tain the processor energy. The bus power obtained from the
Spectre simulations is also multiplied with the execution time
to obtain the energy of the off-chip bus. The energy from the
bus, processor, L1 and L2 cache are summed up to get the total
system power. The resulting measurements for our examples
are shown in Section 7.

4 Data Remapping

Data Remapping is a compile time technique. It is an efficient
remapping of an application’s data layout in memory such that
data elements that are accessed contemporaneously are placed
together in memory. If a reference stream does not exhibit
address adjacency, valuable resources are wasted as data is
unnecessarily fetched and cached. The remapping technique
remaps elements into new sets such that data items that are
more likely to be used together are grouped together into the
same cache block.

The applications to which data remapping can be usefully
applied are record data type-heavy and pointer-heavy applica-
tions. Consider an example where in a file of records, a par-
ticular field of all records has to be searched or modified. The
original mapping of the data in the memory will be such that
fields belonging to a particular record will be placed together.
If a cache line is fetched then all the data other than that par-
ticular field is wasted. Also the search for the next field will
lead to a cache miss. Instead, if all fields were placed together
in the above example then cache misses will be reduced. Also,
energy is not wasted in fetching data that is not useful. The
remapping algorithm is a combination of field reordering and
customized placement to exhibit better spatial locality.

The remapping optimization consists of three phases – gath-
ering phase, remapping of global data objects and remapping
of dynamic data objects. In the gathering phase, an analy-
sis of application memory access patterns along program hot-
spots[1] is performed. The remapping strategy cannot be arbi-
trarily applied to all data objects in the program. It is applied

17

goodelle
Text Box
13

based on the analysis obtained from the gathering phase. In the
second phase global data objects are remapped. Once the can-
didate records have been identified, global program variables
are filtered to isolate the arrays of records which are remapped.
The third phase remaps dynamic data objects (i.e., pointer vari-
ables). The third phase is crucial as applications increasingly
rely on dynamically allocated objects[3, 5].

5 Voltage and Frequency Scaling of
Off-Chip Memory and Buses

The power consumed is proportional to the square of the volt-
age. Thus, reducing the voltage will lead to a quadratic reduc-
tion in power. But when the voltage of a component is lowered
it leads to increase in delay which affects performance. The
off-chip memory and buses are highly capacitive and thus con-
sume close to half of the system power. To reduce the overall
system power significantly we scale the voltage of the off-chip
memory and buses. In our system the off-chip memory is an
L2 cache.

Figure 2 shows the slowing down of L2 memory. The orig-
inal system runs at 100MHz with the processor at 2.75 volts
and off-chip components (including bus and memory) at 3.3
volts. The voltage of the off-chip bus and memory was scaled
from 3.3 volts to 2 volts. This causes the delay of the off-chip
memory and bus to double. To take into consideration the in-
crease in delay, the frequency of the off-chip components was
scaled from 100MHz to 50MHz.

100 MHz

CORE CORE

100 MHz

L2 Memory

100 MHz

L2 Memory

50 MHz

Write Buffer

Figure 2: Slowing down L2 Memory

Frequency scaling is achieved by simulating the off-chip
components at 50MHz instead of the original 100MHz. The
D-Cache and I-Cache controllers were modified such that they
fetch data from the memory at 50MHz instead of the previous
100MHz. This is done by doubling the latency of the memory
(in our case the L2 cache) from 7 to 14 cycles. The voltage at
which power is estimated is reduced from 3.3 volts to 2 volts to
simulate voltage scaling in case of the off-chip bus and mem-
ory.

6 Design Space Exploration

The original system consists of the processor and off-chip
components running at 100MHz. We simulate the system us-

ing two benchmarks health and perimeter before remapping.
We call the original system the before case. The after case is
where the processor is simulated at 100MHz and the off-chip
components are simulated at 50MHz. The health and perime-
ter benchmarks are remapped and simulated with 50MHz L2
memory so that effect of combining both the techniques can
be determined. Switching activity files are collected from the
simulations using the MARS model and are used to determine
the processor and bus power in both cases. The execution
statistics from the Trimaran ARM simulator is used to deter-
mine the power for the L1 cache and off-chip L2 cache.

The data remapping allows the program to achieve the same
overall execution time with half the cache resources. Since the
cache is expensive in terms of both power and cost, halving
the cache size would lead to roughly half the cost and power
requirements. Results have been obtained by using half the L1
and L2 cache size.

The power calculations do not include the overhead of mul-
tiple supply voltages as we assume that multiple supply volt-
ages are already present in the board. Also it is assumed that
voltage scaling (i.e., changing the frequency of off-chip com-
ponents from 3.3 volts to 2 volts) is done statically.

7 Results

The energy savings from combining the two techniques has
been shown for two Olden benchmarks[13], namely perimeter
and health. The benchmarks selected are such that they are
suitable for remapping. The perimeter allocates quad trees at
the program startup and do not modify them. The primary
data structure used in health is a link list to which elements are
added and removed.

Table 1 shows the results for the health benchmark. The
L1 is a 32KB cache with 16 bytes line size. The L2 is a 1MB
cache with 32 bytes line size. We find that for the health bench-
mark there is a large reduction in the execution cycles, but for
perimeter the reduction in execution cycles is not as much (see
Table 2. Data remapping will cause an increase in performance
but much of this performance gain is lost due to slowing down
the off-chip memory. This is clearly seen in the case of the
Health benchmark. Also we find that for both benchmarks
there is a large decrease in the energy of the L2 cache. Even
though the processor power is almost constant, the decrease in
processor energy is due to gains in performance due to remap-
ping. We are able to achieve a maximum of 46% energy gains
in the Health benchmark. From our experiments, we observed
that there is no simple linear relationship among data remap-
ping, frequency/voltage scaling of second level memory, en-
ergy reduction and energy delay reduction.

The remapping technique allows a program to run with the
same execution time but with far less the memory. To explore
the design space, we also considered reducing the L1 and L2

18

goodelle
Text Box
14

Table 1: Energy Delay with Frequency/Voltage Scaling of Memory (FVM) and Data Remapping(DR) for Health Benchmark
Before After After After After After After

DR, FVM DR FVM DR+FVM DR+FVM DR+FVM DR+FVM

1/2size L1 1/2size L2 1/2size L1,L2

Execution Cycles 803645821 479612138 892552982 578046486 603275469 711151104 736311686

Delay(Execution Time)(s) 8.036 4.796 8.926 5.780 6.033 7.112 7.363

Energy(J) 17.076 9.274 14.316 9.274 9.468 11.158 10.134

Energy*Delay 137.231 44.479 127.778 53.608 57.118 79.350 74.618

% Energy Reduction 0.00 39.33 16.16 45.69 44.55 34.66 40.65

% Energy*Delay Reduction 0.00 67.59 6.89 60.94 58.38 42.18 45.63

Table 2: Energy Delay with Frequency/Voltage Scaling of Memory (FVM) and Data Remapping(DR) for Perimeter Benchmark
Before After After After After After After

DR, FVM DR FVM DR+FVM DR+FVM DR+FVM DR+FVM

1/2size L1 1/2size L2 1/2size L1,L2

Execution Cycles 1065497740 967549770 1073983968 999065267 999305168 999095525 999339410

Delay(Execution Time)(s) 10.655 9.675 10.740 9.991 9.993 9.991 9.993

Energy(J) 23.361 21.648 17.860 16.897 16.414 14.221 13.828

Energy*Delay 248.911 209.455 191.814 168.812 164.026 142.081 138.189

% Energy Reduction 0.00 7.33 23.55 27.67 29.74 39.13 40.81

% Energy*Delay Reduction 0.00 15.85 22.94 32.18 34.10 42.92 44.48

Table 3: Energy results after remapping and Voltage Scaling(L1=32KB, L2=1MB) for Health Benchmark
Execution Processor Off-chip Bus L1 Cache L2 Cache Total % reductions Total

Cycles Energy(J) Energy(J) Energy(J) Energy(J) Energy(J) Energy

578046486 6.415 0.433 0.3155 2.104 9.274 45.69

19

goodelle
Text Box
15

cache sizes to half their original sizes. The last three columns
in Tables 1 and 2 show the energy results after halving L1
cache, L2 cache and both L1 and L2 cache respectively. We
find that as expected the energy requirements of the cache also
reduced by half. In case of the Perimeter benchmark the ex-
ecution time remains the same and thus the energy saving in
the memory subsystem is reflected in the overall energy gains.
A maximum of 40.81% energy reduction is achieved in case
of Perimeter benchmark when both caches are reduced to half
their size. But in case of the Health benchmark, reduction in
cache size leads to increase in the execution time. Even though
the energy requirement of the memory subsystem is reduced,
this is not reflected in the overall energy gains due to the in-
crease in execution cycles. Thus, for the Health benchmark,
the maximum energy reduction of 45.69% is found with both
caches at their original sizes (L1=32KB, L2=1MB).

8 Conclusion

There are many techniques at both the hardware and com-
piler level aimed at saving energy and power. In this work we
have demonstrated a combination of two techniques, one at the
hardware level and one at the compiler level. The main draw-
back of hardware techniques is that they tradeoff power with
performance. In our work by combining the two techniques,
we are able to obtain energy gains without leading to a per-
formance loss. For future work, we are looking at additional
architecture level techniques aimed at the memory subsytem
(specifically at the cache) and processor where compiler and
hardware techniques interact to reduce energy.

9 Acknowledgements

This research was funded bt DARPA under contract num-
ber F30602-00-2-0564. We acnowledge help received from
Rodric Rabbah in running the Trimaran simulations of the
Health and Perimeter benchmarks. We also acknowledge do-
nations received from Cadence, Hewlett-Packard, LEDA Sys-
tems, Mentor Graphics, Sun and Synopsys.

References

[1] T. Ball and J. Larus, ”Efficient path profiling,” Proceed-
ings of the 29th Annual International Symposium on Mi-
croarchitecture, December 1996.

[2] P. Panda, N. Dutt and A. Nicolau, “Memory Issues In
Embedded Systems-On-Chip, Optimizations and Explo-
ration, ” Kluwer Academic Publishers, 1999.

[3] B. Calder, C. Krintz, S. John and T. Austin, ” Cache-
conscious data placement,” Proceedings of the Eighth

International Conference on Architectural Support for
Programming Languages and Operating Systems, pp.
139-149, October 1998. Symposium on Theory of Com-
puting, 1978.

[4] A. Acquaviva, L. Benini and B. Ricco, “An Adaptive Al-
gorithm for Low-Power Streaming Multimedia Process-
ing,” Proceedings of Design Automation and Test in Eu-
rope, pp. 273-279, March 2001.

[5] T. Chilimbi, M. Hill and J. Larus, ”Cache-conscious
structure layout,” Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementatio, pp. 1-12, May 1999.

[6] L. Benini, A. Macii, E. Macii and M. Poncino, "Syn-
thesis of Application-Specific Memories for Power Op-
timization in Embedded Systems," Proceedings of 38th
Design Automation Conference, pp. 300-303, June 2000.

[7] T. Chilimbi, B. Davidson and J. Larus, “Cache-conscious
structure definition,” Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, pp. 13-24, May 1999.

[8] L. Chakrapani, K. Palem and W. Wong, “Enhancing
the TRIMARAN compiler infrastructure for StrongARM
code generation,” Technical Report CREST-TR-01-001,
Georgia Institute of Technology, May 2001

[9] M. Kamble and K. Ghose ”Analytical energy dissipation
models for low power caches,” Proceedings of the In-
ternational Symposium on Low Power Electronics and
Design, pp. 143-148, Aug. 1997.

[10] K. Palem, R. Rabbah, P. Korkmaz, V. Mooney and K.
Puttaswamy, "Design Space Optimization of Embedded
Memory Systems via Data Remapping," Proceedings of
the Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES’02), pp. 28-37, June 2002.

[11] K. Palem and R. Rabbah. “Data remapping for design
space optimization of embedded cache systems.” Tech-
nical Report GIT-CC-02-10, Georgia Institute of Tech-
nology, March 2002.

[12] T. Ishihara and K. Asada, "A System Level Memory
Power Optimization Technique using Multiple Supply
and Threshold Voltages," Proceedings of 38th Design
Automation Conference, pp. 456-461, June 2001.

[13] OLDEN benchmark suite. http://www.cs.princeton.edu/
mcc/olden.html.

[14] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Ir-
win, "The Design and Use of Simplepower: A Cycle-
Accurate Energy Estimation Tool," Proceedings of 38th
Design Automation Conference, pp. 340-345, June 2000.

20

goodelle
Text Box
16

[15] P. Korkmaz, K. Puttaswamy and V. Mooney, “Energy
modeling of a Processor core using Synopsys and of the
Memory Hierarchy using the Kamble and Ghose Model,”
Technical Report, CREST-TR-02-002, Georgia Institute
of Technology, February 2002.

[16] The SimpleScalar-Arm Power Modeling Project,
http://www.eecs.umich.edu/~jringenb/power/

[17] Synopsys, Inc., http://www.synopsys.com

[18] LEDA Systems, Inc., http://www.ledasys.com

[19] K. Puttaswamy, K. Choi, J. C. Park, V. J. Mooney III,
A. Chatterjee and P. Ellervee, “System Level Power-
Performance Trade-Offs in Embedded Systems Using
Voltage and Frequency Scaling of Off-Chip Buses and
Memory,” Proceedings of International Symposium
on System Synthesis, to appear, October, 2002, Kyoto,
Japan.

[20] K. Puttaswamy, L. N. Chakrapani, K. W. Choi, Y. S.
Dhillon, U. Diril, P. Korkmaz, K. K. Lee, J. C. Park, A.
Chatterjee, P. Ellervee, V. Mooney, K. Palem and W. F.
Wong, "Power-Performance Trade-Offs in second level
memory used by an ARM-Like RISC Architecture," in
the book Power Aware Computing, Rami Melhem and
Robert Graybill, Eds., Kluwer Academic/Plenum Pub-
lishers, 2002.

[21] Trimaran, http://www.trimaran.org

21

goodelle
Text Box
17

Power and Energy Impact by Loop Transformations

Hongbo Yang†, Guang R. Gao†, Andres Marquez†, George Cai‡, Ziang Hu†

† Dept of Electrical and Computer Engineering

University of Delaware

Newark, DE 19716

fhyang,ggao,marquez,hug@capsl.udel.edu

‡ Intel Corp

1501 S. Mopac Expressway, Suite 400

Austin, TX 78746

george.cai@intel.com

Power dissipation issues are becoming one of the

major design issues in high performance processor

architectures.

In this paper, we study the contribution of com-

piler optimizations to energy reduction. In particu-

lar, we are interested in the impact of loop optimiza-

tions in terms of performance and power tradeoffs.

Both low-level loop optimizations at code generation

(back-end) phase, such as loop unrolling and soft-

ware pipelining, and high-level loop optimizations at

program analysis and transformation phase (front-

end), such as loop permutation and tiling, are stud-

ied.

In this study, we use the Delaware Power-Aware

Compilation Testbed (Del-PACT) — an integrated

framework consisting of a modern industry-strength

compiler infrastructure and a state-of-the-art micro-

architecture-level power analysis platform. Using

Del-PACT, the performance/power tradeoffs of loop

optimizations can be studied quantitatively. We have

studied such impact on several benchmarks under

Del-PACT.

The main observations are:

� Performance improvement (in terms of timing)

is correlated positively with energy reduction.

� The impact on energy consumption of high-

level and low-level loop optimizations is often

closely coupled, and we should not evaluate in-

dividual effects in complete isolation. Instead, it

is very useful to assess the combined contribu-

tion of both, high-level and low-level loop opti-

mizations.

� In particular, results of our experiments are

summarized as follow:

– Loop unrolling reduces execution time

through effective exploitation of ILP from

different iterations and results in energy

reduction.

– Software pipelining may help in reducing

total energy consumption – due to the re-

duction of the total execution time. How-

ever, in the two benchmarks we tested,

the effects of high-level loop transforma-

tion cannot be ignored. In one bench-

mark, even with software pipelining dis-

abled, applying proper high-level loop

transformation can still improve the over-

all execution time and energy, comparing

with the scenario where high-level loop

transformation is disabled though soft-

ware pipelining is applied.

– Some high-level loop transformation such

as loop permutation, loop tiling and loop

fusion contribute significantly to energy

23

goodelle
Text Box

goodelle
Text Box
18

goodelle
Text Box
Appendix C:

reduction. This behavior can be attributed

to reducing both the total execution time

and the total main memory activities (due

to improved cache locality).

An analysis and discussion of our results is pre-

sented in section 4.

1 Introduction

Low power design and optimization [8] are becom-

ing increasingly important in the design and appli-

cation of modern microprocessors. Excessive power

consumption has serious adverse effects – for exam-

ple, the usefulness of a device or equipment is re-

duced due to the short battery life time.

In this paper, we focus on compiler optimization

as a key area in low-power design [7, 13]. Many tra-

ditional compiler optimization techniques are aimed

at improving program performance such as reducing

the total program execution time. Such performance-

oriented optimization may also help to save total en-

ergy consumption since a program terminates faster.

But, things may not be that simple. For instance,

some of such optimization my try to improve per-

formance by exploiting instruction-level parallelism,

thus increasing power consumption per unit time.

Other optimization may reduce total execution time

without increasing power consumption. The trade-

offs of these optimizations remain an interesting re-

search area to be explored.

In this study, we are interested in the impact

of loop optimizations in terms of performance and

power tradeoffs. Both low-level loop optimizations

at code generation (back-end) phase, such as loop

unrolling and software pipelining, and high-level

loop optimizations at program analysis and transfor-

mation phase (front-end), such as loop permutation

and tiling, are studied.

Since both high-level and low-level optimization

are involved in the study, it is critical that we should

use a experimental framework where such tradeoff

studies can be conducted effectively. We use the

Delaware Power-Aware Compilation Testbed (Del-

PACT) — an integrated framework consisting of

a modern industry-strength compiler infrastructure

and a state-of-the-art micro-architecture level power

analysis platform. Using Del-PACT, the perfor-

mance/power tradeoffs of loop optimizations can be

studied quantitatively. We have studied the such im-

pact on several benchmarks under Del-PACT.

This paper describes the motivation of loop op-

timization on program performance/power in Sec-

tion 2 and describing the Del-PACT platform in Sec-

tion 3. The results of applying loop optimization on

saving energy are given in Section 4. The conclu-

sions are drawn in Section 5.

2 Motivation for Loop Optimization

to Save Energy

In this section we use some examples to illustrate the

loop optimizations which are useful for energy sav-

ing. Both low-level loop optimizations at the code

generation (back-end) phase, such as loop unrolling

and software pipelining, and high-level loop opti-

mizations at the program analysis and transformation

phase (front-end), such as loop permutation, loop fu-

sion and loop tiling, are discussed.

2.1 Loop unrolling

Loop unrolling [17]intends to increase instruction

level parallelism of loop bodies by unrolling the loop

body multiple times in order to schedule several loop

iterations together. The transformation also reduces

the number of times loop control statements are exe-

cuted.

 24

goodelle
Text Box
19

2.2 Software pipelining

Software pipelining restructures the loop kernel to

increase the amount of parallelism in the loop, with

the intent of minimizing the time to completion.

In the past, resource-constrained software pipelin-

ing [10, 16] has been studied extensively by several

researchers and a number of modulo scheduling al-

gorithms have been proposed in the literature. A

comprehensive survey of this work is provided by

Rau and Fisher in [15]. The performance of soft-

ware pipelined loop is measured by II(initiation in-

terval). Every II cycles a new iteration is initiated,

thus throughput of the loop is often measured by the

value of II derived from the schedule. By reducing

program execution time, software pipelining helps

reduce the total energy consumption. But, as we will

show later in the paper, the net effect of energy con-

sumption due to software pipelining also depends on

high-level loop transformations performed earlier in

the compilation process.

2.3 Loop permutation

Loop permutation (also called loop interchange for
two dimensional loops) is a useful high-level loop
transformation for performance optimization [19].
See the following C program fragment:

for (i = 0; i < M; i++) f

for (j = 0; j < N; j++) f

a[j][i] = 1;

g

g

Since the array a is placed by row-major mode,
the above program fragment doesn’t have good cache
locality because two successive references on array a
have a large span in memory space. By switching the
inner and outer loop, the original loop is transformed
into:

for (j = 0; j < N; j++) f

for (i = 0; i < M; i++) f

a[j][i] = 1;

g

g

Note that the two successive references on array a

access contiguous memory address thus the program

exhibits good data cache locality. It usually improves

both the program execution and power consumption

of data cache.

2.4 Loop tiling

Loop tiling is a powerful high-level loop optimiza-
tion technique useful for memory hierarchy opti-
mization [14]. See the matrix multiplication program
fragment:

for (i = 0; i < N; i++) f

for (j = 0; j < N; j++) f

for (k = 0; k < N; k++) f

c[i][j] = c[i][j] +

a[i][k] * b[k][j];

g

g

g

Two successive references to the same element of

a are separated by N multiply-and-sum operations.

Two successive references to the same element of

b are separated by N2 multiply-and-sum operations.

Two successive references to the same element of c

are separated by 1 multiply–and-sum operation. For

the case when N is large, references to a and b ex-

hibits little locality and the frequent data fetching

from memory results in high power consumption.

Tiling the loop will transforme it to:

for (i = 0; i < N; i+=T) f

for (j = 0; j < N; j+=T) f

for (k = 0; k < N; k+=T) f

for (ii = i; ii < min(i+T, N); ii++) f

for (jj = j; jj < min(j+T, N); jj++) f

for (kk = k; kk < min(k+T, N); kk++) f

25

goodelle
Text Box
20

c[ii][jj] = c[ii][jj] +

a[ii][kk] * b[kk][jj];

g

g

g

g

g

g

Notice that in the inner three loop nests, we only

compute a partial sum of the resulting matrix. When

computing this partial sum, two successive refer-

ences to the same element of a are separated by T

multiply-and-sum operations. Two successive refer-

ences to the same element of b are separated by T2

multiply-and-sum operations. Two successive refer-

ences to the same element of c are separated by one

multiply-and-sum operation. A cache miss occurs

when the program execution re-enter the inner three

loop nests after i, j or k is incremented. However,

cache locality in the inner three loops is improved.

Loop tiling may have dual effects in improving to-

tal energy consumption: it reduces both the total ex-

ecution time and the cache miss ratios – both help

energy reduction.

2.5 Loop fusion

See the following program fragment:

for (i = 0; i < N; i++) f

a[i] = 1;

g

for (i = 0; i < N; i++) f

a[i] = a[i] + 1;

g

Two successive references to the same element of
a span the whole array a in the code above. By fusing
the two loops together, we can get the following code
fragment:

for (i = 0; i < N; i++) f

a[i] = 1;

a[i] = a[i] + 1;

g

The transformed code has much better cache lo-

cality. Just like loop tiling, this transformation will

reduce both power and energy consumption.

3 Power and Performance Evalua-

tion Platform

It is clear that, for the purpose of this study, we must

use a compiler/simulator platform which (1) is ca-

pable of performing loop optimizations at both the

high-level and the low-level, and a smooth integra-

tion of both; (2) is capable of performing micro-

architecture level power simulations with a quanti-

tative power model.

To this end, we chose to use the Del-PACT(

Delaware Power-Aware Compilation Testbed) – a

fully integrated framework composed of SGI MIP-

Spro compiler retargeted to the SimpleScalar [1] in-

struction set architecture, and a micro-architecture

level power simulator based on an extension of the

SimpleScalar architecture simulator instrumented

with the Cai/Lim power model [5, 4], as shown in

Figure 1. The SGI MIPSpro compiler is an industry-

strength highly optimizing compiler. It implements

a broad range of optimizations, including inter-

procedural analysis and optimization (IPA), loop nest

optimization and parallelization (LNO) [18], and

SSA-based global optimization (WOPT) [2, 11] at

high level. It also has an efficient backend includ-

ing software pipelining, integrated global and local

scheduler(IGLS) [12], and efficient global and reg-

ister allocators (GRA and LRA) [3]. The legality

of loop nest optimizations listed in Section 2 de-

pends on dependence analysis [20]. The SGI MIP-

Spro compiler performs alias and dependence anal-

ysis and a rich set of loop optimizations including

 26

goodelle
Text Box
21

those we will study in the paper. We have ported

the MIPSpro compiler to the SimpleScalar instruc-

tion set architecture.

Parameterized

Power Models

Power
Results

Physical

Information

Cycle-accurate
Performance Simulator
(SimpleScalar)

Performance
Results

Activity Counters

FE
IPA

LNO

OPT

CG IGLS

GRA/LRA

Source Program

MIPSpro
compiler

Figure 1: Power and Performance Evaluation Plat-

form

The simulation engine of the Del-PACT platform

is driven by the Cai/Lim power model as shown in

the same diagram. The instrumented SimpleScalar

simulator generates performance results and activity

counters for each functional block. The physical in-

formation comes from approximation of circuit level

power behaviors. During each cycle, the parameter-

ized power model computes the present power con-

sumption of each functional unit using the following

formula:

power� AF �PDA�A� idle power� leakage power

AF Activity factor

PDA Active power density

A Area

The power consumption of all functional blocks is

summed up, thus obtaining the total power consump-

tion.

Other power/performance evaluation platforms

exist as well. A model worth mentioning is Simple-

Power [9]. In [9] loop transformation techniques are

evaluated. In their framework, high-level transfor-

mation and low-level loop transformations are per-

formed in two isolated compilers while in our plat-

form these two are tightly coupled into a single com-

piler. The difference between these two power mod-

els are left to be studied and a related work is found

in [6].

4 Experimental Results

In this section, we present the experiments we have

conducted using Del-PACT platform. Two bench-

mark programs: mxm and vpenta from the SPEC92

floating point benchmark suite are used. We eval-

uated the impact on performance/power of loop

nest optimizations, software pipelining and loop un-

rolling. Loop nest optimization is a set of high-

level optimizations that includes loop fusion, loop

fission, loop peeling, loop tiling and loop permu-

tation. The MIPSpro compiler analyzes the com-

piled program by determining the memory access se-

quence of loops, choosing those loop nest optimiza-

tions which are legal and profitable. Looking through

the transformed code, we see that the loop nest op-

timizations applied on mxm is loop permutation and

loop tiling, while those applied on vpenta are loop

permutation and loop fusion. Performance, power

and energy results of these transformations on each

benchmark are shown in Figure 2.

27

goodelle
Text Box
22

mxm vpenta
0

0.5

1

1.5

2

2.5

Benchmarks

R
el

at
iv

e
E

xe
c

T
im

e

mxm vpenta
0

0.5

1

1.5

2

Benchmarks

R
el

at
iv

e
P

ow
er

 c
on

su
m

pt
io

n

mxm vpenta
0

0.5

1

1.5

2

2.5

Benchmarks

R
el

at
iv

e
E

ne
rg

y
co

ns
um

pt
io

n

original
unrolled
software pipelined
tiled
swp+tiling

Figure 2: Performance, power and energy compari-

son

We observe that the performance improvement in

terms of timing is correlated positively with the en-

ergy reduction. From Figure 2 we see the variation

of execution time causes the similar variation in en-

ergy consumption. The results show that in the two

benchmarks we have run, the dominating factor of

energy consumption is the execution time.

Loop unrolling improves the program execution

by increasing instructions level parallelism thus in-

creasing power consumption correspondingly. For

the mxm example, the instructions per cycle(IPC) in-

creased from 1.68 to 1.8 by unrolling 4 times. For

the vpenta example, loop unrolling reduces the to-

tal instruction count by 2% because of cross-iteration

common subexpressions elimination. The IPC value

before the loop unrolling and after that are 1.01 and

1.04 respectively.

Software pipelining helps in reducing total energy

consumption in the mxm example. The IPC value

without and with software pipelining are 1.68 and

1.9 respectively. Power consumption increase a lit-

tle bit more as opposed to the case with loop un-

rolling because software pipelining exploits more in-

struction level parallelism than loop unrolling does.

However, energy consumption is still reduced com-

pared with the original untransformed program. In

vpenta example, software pipelining does not help

because of the high miss rate(13%) of level-1 data

cache accesses.

Loop tiling and loop permutation applied on mm

enhanced cache locality and they can improve the

program performance more than software pipelin-

ing does. Loop permutation and loop fusion help

the vpenta program reduce its level-1 data cache

miss rate from 13% to 10%, thus reducing total en-

ergy consumption. Also these transformations make

the performance improvement of software pipelining

more evident compared with the case that software

pipelining is applied without these high-level opti-

mizations.

5 Conclusions

In this paper, we introduced our Del-PACT plat-

form, which is an integrated framework that includes

the MIPSpro compiler, SimpleScalar simulator and

CAI/LIM power estimator. This platform can serve

as the tool to make architecture design tradeoffs, and

to study the impact of compiler optimization on pro-

gram performance and power consumption. We use

this platform to conduct experiments on the impact

of loop optimizations on program performance vs

power.

References

[1] Todd Austin. The simplescalar tool set, ver-

sion 2.0. Technical Report 1342, Computer Sci-

ences Department, Univ of Wisconsin, 1997.

[2] Fred Chow, Sun Chan, Robert Kennedy, Shin-

Ming Liu, Raymond Lo, and Peng Tu. A new

algorithm for partial redundancy elimination

 28

goodelle
Text Box
23

based on SSA form. In Proc. of the ACM SIG-

PLAN ’97 Conf. on Programming Language

Design and Implementation, pages 273–286,

Las Vegas, Nev., Jun. 15–18, 1997. SIGPLAN

Notices, 32(6), Jun. 1997.

[3] Fred C. Chow and John L. Hennessy. The

priority-based coloring approach to register

allocation. ACM Trans. on Programming

Languages and Systems, 12(4):501–536, Oct.

1990.

[4] A. Dhodapkar, C.H.Lim, and G.Cai. Tem-

pest: A thermal enabled multi-model

power/performance estimator. In Work-

shop on Power-Aware Computer Systems, Nov

2000.

[5] G.Cai and C.H.Lim. Architectural level

power/performance optimization and dynamic

power estimation. Cool Chips Tutorial, in

conjunction with 32nd Annual International

Symposium on Microarchitecture. Haifa, Is-

rael, Nov 1999.

[6] Soraya Ghiasi and Dirk Grunwald. A com-

parison of two architectural power models.

In Workshop on Power-Aware Computer Sys-

tems. Cambridge, MA, Nov 2000.

[7] Mary Jane Irwin, Mahmut Kandemir, and Vi-

jaykrishnan Narayanan. Low power design

methodologies: Hardware and software issues.

Tutorial on Parallel Architecture and Compila-

tion Techniques 2000.

[8] J.M.Rabaey and M. Pedram, editors. Low-

Power Design Methodologies. Kluwer, 1996.

[9] Mahmut T. Kandemir, N. Vijaykrishnan,

Mary Jane Irwin, and W. Ye. Influence of com-

piler optimizations on system power. In Pro-

ceedings of the 37th Conference on Design Au-

tomation (DAC-00), pages 304–307, NY, June

5–9 2000. ACM/IEEE.

[10] Monica Lam. Software pipelining: An effec-

tive scheduling technique for VLIW machines.

In Proc. of the SIGPLAN ’88 Conf. on Pro-

gramming Language Design and Implementa-

tion, pages 318–328, Atlanta, Geor., Jun. 22–

24, 1988. SIGPLAN Notices, 23(7), Jul. 1988.

[11] Raymond Lo, Fred Chow, Robert Kennedy,

Shin-Ming Liu, and Peng Tu. Register promo-

tion by sparse partial redundancy elimination of

loads and stores. In Proc. of the ACM SIGPLAN

’98 Conf. on Programming Language Design

and Implementation, pages 26–37, Montréal,

Qué., Jun. 17–19, 1998. SIGPLAN Notices,

33(6), Jun. 1998.

[12] Srinivas Mantripragada, Suneel Jain, and Jim

Dehnert. A new framework for integrated

global local scheduling. In Proc. of the 1998

Intl. Conf. on Parallel Architectures and Com-

pilation Techniques, pages 167–174, Paris, Oct.

12–18, 1998. IEEE Comp. Soc. Press.

[13] M.Kandemir, N. Vijaykrishnan, M. J. Irwin,

W. Ye, and I. Demirkiran. Register relabeling:

A post-compilation technique for energy reduc-

tion. In Workshop on Compilers and Operating

Systems for Low Power 2000 (COLP’00).

[14] Steven S. Muchnick. Advanced Compiler De-

sign and Implementation. Morgan Kaufmann

Publishers Inc., 1997.

[15] B. R. Rau and J. A. Fisher. Instruction-level

parallel processing: History, overview and per-

spective. J. of Supercomputing, 7:9–50, May

1993.

[16] B. R. Rau and C. D. Glaeser. Some scheduling

techniques and an easily schedulable horizon-

tal architecture for high performance scientific

29

goodelle
Text Box

goodelle
Text Box
24

computing. In Proc. of the 14th Ann. Micro-

programming Work., pages 183–198, Chatham,

Mass., Oct. 12–15, 1981. ACM SIGMICRO

and IEEE-CS TC-MICRO.

[17] Vivek Sarkar. Optimized unrolling of nested

loops. In Proceedings of the 2000 international

conference on Supercomputing, pages 153 –

166, Santa Fe, NM USA, May 8 - 11 2000.

[18] Michael E. Wolf, Dror E. Maydan, and Ding-

Kai Chen. Combining loop transformations

considering caches and scheduling. In Proc. of

the 29th Ann. Intl. Symp. on Microarchitecture,

pages 274–286, Paris, Dec. 2–4, 1996. IEEE-

CS TC-MICRO and ACM SIGMICRO.

[19] Michael Wolfe. Advanced loop interchanging.

In Proc. of the 1986 Intl. Conf. on Parallel Pro-

cessing, pages 536–543, St. Charles, Ill., Aug.

19–22, 1986.

[20] Hans Zima and Barbara Chapman. Supercom-

pilers for Parallel and Vector Computers. ACM

Press, New York, 1990.

 30

goodelle
Text Box

goodelle
Text Box
25

HA2TSD: Hierarchical Time Slack Distribution
for Ultra-Low Power CMOS VLSI

Kyu-won Choi and Abhijit Chatterjee
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332
{kwchoi,chat}@ece.gatech.edu

ABSTRACT
This paper describes an efficient hierarchical design and optimization
approach for ultra-low power CMOS logic circuits. We introduce the
Hierarchical Activity-Aware Time Slack Distribution (HA2TSD)
algorithm, which distributes the surplus time slack into the most
power-hungry modules hierarchically. HA2TSD ensures that the total
slack budget is maximal and the total power is near-minimal. Based
on these time slacks, we have optimized technology parameters
(supply voltage, threshold voltage, and device width) through a gate-
level power optimizer and have tested the algorithm on a set of
benchmark example circuits and building blocks of a synthesizable
ARM core. The experimental results show that our strategy delivers
over an order of magnitude savings in total (static and dynamic)
power and reduces the optimization run-time significantly.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids-simulation.
General Terms
Algorithms.
Keywords
Low-power design, time slack distribution, and gate-level power
optimization.

1. INTRODUCTION
Recent advances in wireless networking technology and the rapid
development of semiconductor technology have introduced new
challenges in the design of portable devices such as personal digital
assistants (PDAs). Power optimization for those embedded systems
and power constrained mobile computing is an active area of research
that has received considerable attention in most recent years. Delay,
area and power trade-offs for complex systems require the use of
advanced algorithms and EDA tools. To achieve excellent power and
performance results, future EDA tools must harness the combination
of technology parameters, i.e., multiple supply voltages (Vdd),
multiple threshold voltages (Vth), and transistor resizing (W). By
combining the optimization strategy with the on-the-fly technology
parameter scaling, designers and EDA tools can fully explore the
design space of dynamic power, static power, and timing slack [1,2].

In general, low-power optimizations that do not compromise

performance are dependent on time slack calculation and the surplus
delay (slack budget) distribution among the circuit modules. Time
slack is measured as the difference between the signal required time
and the signal arrival time at the primary output of each module. The
first use of the slack distribution approach was reported by the
popular zero-slack algorithm (ZSA) [3]. The ZSA is a greedy
algorithm that assigns slack budgets to nets on long circuit paths. It
ensures that the net slack budget is maximal, which means that no
more slack budget can be assigned to any of the nets without
violating the path timing constraints. Most other slack distribution
algorithms are pruning versions of ZSA [4,5] for improving delay
performance of circuits. However, the objective of the timing
analysis in this paper is to provide a low-power methodology that
maintains the high speed of circuits. The HA2TSD algorithm is
different from the ZSA in three principal aspects: i) time slack
distribution of each module is based on power rather than
performance metrics; ii) the slack distribution is performed
hierarchically, and iii) the technology parameters of each module are
optimized at the gate level.

Figure 1. Hierarchical Delay Assignment and Gate Level Power

Optimization

2. DELAY AND ENERGY MODEL
We use a transregional model for estimating the worst-case signal
propagation delay through a gate. The delay model has been derived
using an extension of the alpha-power law saturation drain current
model [7] to the subthreshold region. The drain current model
incorporates effects of high-field and quasi-ballistic (velocity
overshoot) carrier transport in the MOSFET channel. The delay
model consists of four major components: 1) the delay due to
switching MOSFETs, 2) the distributed interconnect RC delay, 3) the
time of flight delay, 4) the delay component due to the non-zero rise
time of the input signal are considered. These definitions of gate
delay and interconnect resistance delay allow the definition of arrival

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’02, August 12-14, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-475-4/02/0008…$5.00.

32

goodelle
Text Box
26

goodelle
Text Box
Appendix D:

times and required times at the input and output of a gate in the
network, which are used for defining time slack.

,

()

(1, ()) 1

1
1 12 max { } + ()
2 1 ()

v

oi

v i v v vj vj
ii

TS
dd f v

dd
d d DP vj t INTi f v jDvw ii off v

V
V

Vt t C w C C
I f v I wα β∈ =

− = − ⋅ + + + −

∑

,

() 1

(1, ()) 1

1 1 1 max { } () (1)
2 2 ()

ii
vj

v j vj vj vj v
oi

f v
INT

d INT vj t INT m ddj f v jINT Dvw

L
t R w C C C V

v I j

−

∈ =

+ + + +

∑

In the above equation, Vdd is the power supply voltage, tdv is the
delay of gate Gv, VTSi is the threshold voltage of the ith gate, α is the
velocity saturation coefficient (1 ≤ α ≤ 2), tdi,v is the delay of the gate
Gv at the ith fan-in, tdv,j is the delay of the gate Gv at the jth fan-out,
IDvw (fii) is the switching drain current per unit width, fii is the number
of fanins, foi is the number of fanouts, β is the pMOSto nMOS width
ratio (β ≥ 1), Ioff is the off current per unit width, CDPv is the sum of
the overlap, junction and finging capacitance at the output node per
unit width, wv is the device width, adjusting wv scales the widths of
all the transistors in Gv (wv ≥ 1), wvj is the device width the gate at the
jth fan-out (wij ≥ 1), Ctvj is the input capacitance per unit width of the
gate being driven by the jth fan-out, CINTvj is the interconnect
capacitance at the jth fan-out, RINTvj is the interconnection resistance
at the jth fan-out, LINTvj is the interconnection length at the jth fan-out,
vINT is the propagation velocity through the interconnect, Cmv is the
intermediate node capacitance of series connected MODFET’s in
multiple fan-in gates, fc is the clock frequency, ηv activity factor of
the gate output, and KSC is the coefficient for short-circuit dissipation
[8]. The models are described in detail in our previous work [6].
The equations used to compute the dynamic and static energy
dissipations of a gate are described next. Similar models have been
presented and analyzed in a recent work by [8]. It is assumed that the
gates are simple multi-input gates with symmetric series or parallel
pull-up and pull-down MOSFET configurations. Contributions of
subthreshold leakage through the MOSFET channel as well as the
leakage across the device drain junctions to static dissipation are
included.

1) Static Dissipation of Gate Gv (v ∈ N):
 / (5)

vStatic dd v off cE V W I f=

2) Dynamic and Short-Circuit Dissipation of Gv
2

()

1

1 (1)
2

 { (() 1) } () (6)

v

oi

v v vj vj

Dynamic v dd SC

f v

v DP ii m vj t INT
j

E V K

w C f v C w C C

η

=

= +

⋅ + − +

∑

3. PREVIOUS WORK
Supply voltage scaling technique for low power has been investigated
in almost all levels of the design hierarchy from system level to
device level due to the quadratic effect on the switching power
component. Many respective researches have been shown up in
literature [1]. However, it does not come without penalties [9]. The
scaling limitations of Vdd reduction are: 1) Delay increase
(performance requirements impose a limit); and 2) Noise margins
decrease (circuit is more susceptible to noise related soft failures).
The approaches to overcome the extent of Vdd scaling are: 1)
Availability of high-efficiency DC-DC converter for use [10]; 2)
Scaling down the dimensions of devices along with Vdd to
compensate for the effects of Vdd on performance; and 3) Reduction
of the threshold voltage of transistors.

Threshold voltage scaling can be used to compensate the performance
penalty of the Vdd reduction. In addition, for the active mode of
operation, the low Vth is preferred because of the higher performance.
However, for the standby mode, high Vth is useful for reduction of
leakage power. Different threshold voltages can be developed by
multiple Vth implantation during the fabrication, by changing the
substrate and source bias, by controlling the back gate of double-gate
SOI (silicon on insulator) devices [10]. Some techniques in literature
are: 1) SATS (self adjusting threshold voltage scheme) [11]; 2)
MTCMOS (multi-threshold voltage CMOS) [12]; 3) DTMOS
(dynamic threshold voltage MOSFET) [13]; and 4) DGDT-SOI
(double fate dynamic threshold control SOI) [14]. In general, the
threshold voltage is a function of a number of parameters including
the following: 1) Gate conductor, 2) Gate insulation material, 3) Gate
insulator thickness-channel doping, 4) Impurities at the silicon-
insulator interface, and 5) Voltage between the source and the
substrate.

Transistor and gate sizing affects for dynamic and leakage power
reduction and delay. A large gate is required to drive a large load
capacitance with acceptable delay but requires more power. The basic
rule is to use the smallest transistors or gates that satisfy the delay
constraints. To reduce dynamic power, the gates that toggle with
higher frequency should be made smaller. An interesting problem
occurs when the sizing goal is to leakage power of a circuit. The
leakage current of a transistor increases with decreasing threshold
voltage and channel length. In general, a lower threshold or shorter
channel transistor can provide more saturation current and thus offers
a faster transistor. This presents a tradeoff between leakage power
and delay. There have been a number of optimization algorithms for
gate sizing for dozens of years [15].

Figure 2 presents the fundamental characteristics of those three
device parameters (Vdd, Vth,W) for power and delay tradeoffs [2].
Figure 2(a) shows the Vdd/Vth and Delay*Energy tradeoffs. It shows
that the supply voltage should be larger than four times of the
threshold voltage if the delay is not to increase excessively. Figure
2(b) shows the Device Width and Delay*Energy tradeoffs. It is
shown that the delay decreases with increase device width but the
delay-energy product is minimized when the devices contribute half
of the total load capacitance. The technology parameters trade-offs
are summarized in Figure 2(c). In this paper, we try to optimize the
non-linear parameters of those tradeoffs efficiently to minimize the
total power.

R
el

at
iv

e
S

ca
le

Vdd/Vth
7.0

1.0

Solid Line: Energy*Delay

Dot Line: Delay

Vth=0.7V

Vth=0.3V R
el

at
iv

e
S

ca
le

Wn+Wp
1.0

1.0

Energy*Delay

Delay

1/Idsat Total C

(a) Vdd, Vth, Energy, Delay
Tradeoffs [2]

(b) Device Width Energy, Delay
Tradeoffs [2]

To minimize Total Power:
i) More surplus delay to more power consumption modules/gates

ii) Simultaneously Vdd, Vth, W Scaling

(c) Technology Scaling Rationale

Vdd Delay Power 2

Vdd Delay Power 2

W Delay Power

W Delay Power

Vth Delay Power
Vth Delay Power

Figure 2. Technology Optimization Rationale

33

goodelle
Text Box
27

4. PROPOSED APPROACH
The key steps of our approach are shown in Figure 3. First
hierarchical circuit partitioning is performed. Then, beginning with
the topmost level of the design hierarchy, delay values are assigned to
every module at that level. The total delay from PI to PO is given.
The problem is to determine the delays of the individual modules so
that total power consumption can be minimized by optimizing the
supply voltage, threshold voltage and device sizes of module Mj for
the assigned delay values. The procedure is repeated hierarchically.
We use the following heuristic to assign delays to each module.

Heuristic: In a given data flow graph of Mj modules, let

j i i

node i
C cη= ∑ be the summation of the product of the activity iη at

node i and the capacitance ic at node i over all nodes i of the module
Mj. If the delay assigned to module Mj is Dj, then the best delay
assignment for minimizing power is obtained when

1 2

1 2

 j

j

DD D
C C C

= = =i i i

It is clear that such an assignment of delay to each Mj can cause the
overall path delay constraint (sum of delays assigned to each module)
to be violated for some of the paths in the module. Therefore, the
iterative HA2TSD algorithm is used to solve the problem. This is
described below.

Figure 3. Power Optimization Procedure

4.1 Topological Depth-Based Partitioning
For simulation run-time efficiency and power optimization
effectiveness, we introduce a circuit partitioning algorithm which
ensures the minimization of the delay skew between sub-modules,
and constrains maximum sub-module size (or fan-out size). Figure 4
gives conceptual overview of the topological depth-based partitioning.
First of all, labeling of each circuit node is conducted according to
the topological order. Then, according to the maximum depth and
maximum size constraints, the whole flattened gate-level digital
circuit is partitioned into sub-module circuits. The detailed algorithm
for the partitioning is shown in Figure 5. The complexity of this
algorithm is O(bm), where b is the branching factor (i.e., average fan-
out number) and m is maximum topological depth.

ii) Define max depth and max number of nodes inside of each module
iii) Generate partition of each module so as to minimize skew for
 given depth and size

Mapping into
Graph Theory

i) Generate topological level
 (depth) for each module by using
 labeling algorithm

Figure 4. Partitioning Overview

Figure 5. Partitioning Algorithm

4.2 Activity-Aware Delay Assignment
Figure 6 presents an example of the module level delay assignment
algorithm. In the first step, each module is sorted by the amount of
load capacitance of each module (step 1). According to the priority of
each module, we assign maximum delay with the “objective
function” and “delay assignment” formula in Fig. 6 (Step 2 and 3).
Then we look at the local improvement by local search (step 4). If all
modules’ delays are assigned, conduct the technology parameter
optimization at the gate level (step 5). Finally, we generate the
power/area saving values and optimal parameters. In the algorithm,

34

goodelle
Text Box
28

each module (M1,…,Mi) can be a functional module or a sub-
partition, the total physical capacitance of a module can be the sum
of the fan-in/out counts inside the module, and the load capacitance
of each module can be calculated by multiplying the total switching
activities by the total fan-in/out net counts. Its algorithm is shown in
Figure 7. The complexity of the algorithm is O(nbm), where n is the
number of modules, b is the branching factor (i.e., average fan-out
number) and m is maximum topological depth.

M1

M3

M2

M5

M4

M6PI PO

20

15

15

20

10

5

* Each Module Load Capacitance
= Total Switching Activity * Total Capacitance

= 20

 Cycle Time (Tmax) = 30 ns

* Original Module Delay = Balanced similarly

Object Function =

1 2 6 max D D D T+ + + ≤i i i

(= switching activity at node , = capacitance at node)i ii c iη

Object : Assign max delay of each module for max power saving
 (Note: slack time = power/area saving)

Step 1: Module Priority queue for each module
 by load capacitance

M4, M1 (20)
M2 (15)
M3 (10)

M5,M6 (5)

Load
Capacitance

Delay ssignment =
max(- Assigned Delay Sum)

Total Load Capacitance Sum in Path
jC

T×

Step 2: - Select M4
 - Path Priority queue for each path with M4

Path1: M1,M2,M4,M6 (60)

 - Select Path1
 - Delay of M4 = (20/60)*30 = 10 ns

Step 3: - Repeat Step2 for all modules
 - Delay of M1 = (20/40)*20 = 10 ns
 - Delay of M2 = (15/20)*10 = 7.5 ns
 - Delay of M3 = (10/15)*10 = 6.66 ns
 - Delay of M5 = 10 ns
 - Delay of M6 = 2.5 ns
Step 4: - Local search improvement
 - Increase 6.66 to 7.5 for M3
Step 5: - Go to Gate level optimization (Vdd, Vth, W Scaling)
 with this Max delay of each module

61 2

1 2 6

 DD D
C C C

= = =i i i

j i i

node i

C cη= ∑

Path2: M1,M3,M4,M6 (55)

Figure 6. An Example of Delay Assignment

Figure 7. Delay Assignment Algorithm

4.3 Gate-level Power Optimization
There are three ways to save power dissipation while maintaining
operation frequency by utilizing surplus time slack in non-critical
paths: i) employing multiple-Vdd to lower supply voltage, ii)
employing multiple-Vth to reduce leakage current, and iii) employing
multiple-W to reduce circuit capacitance. In this paper, the Vdd
reduction is main scaling parameter for low power, and Vth and W
scaling is mainly for creating more time slack for the ultra-low
power optimization. The difficulties of the power optimization at gate
level come from two major aspects: i) the non-linear interactions of
the object parameters, for example, each gate has at least four non-
linear variables (Vdd, Vth, W, Delay) and ii) the optimization time
complexity, for example, after logic synthesis of target system, each
functional module (i.e., ALU, Adder, Multiplier, etc.) might generate
large number of gates/interconnections and the searching space for
the optimization is exponential. Therefore, simulation-efficient
partitioning scheme should be judiciously considered before the gate
level optimization. The Figure 8 shows the relationship between the
maximum delay assignment and the technology scaling for power
savings.

Figure 8. Time Slack and Power Saving

After the maximum delays have been assigned to each module/gate in
the circuit, we optimize each gate individually for minimum power.
The strategy is to find iteratively, using binary search, the optimal
combination of Vdd, Vth, and W for each gate that meets the

35

goodelle
Text Box
29

maximum delay condition while achieving minimum power
dissipation. We used our previous work for the gate level power
optimization [6]. This strategy is based on the observation that power
consumption and delay are monotonic functions of Vdd, Vth, and W,
individually, other parameters being fixed. Since it is impractical to
have more than one power supply or threshold voltage in the circuit,
we keep only one global value of Vdd and Vth. However, the
algorithm could be easily modified to allow the use of multiple
threshold values in the circuit if desired. The algorithmic complexity
of this procedure depends on the number of iteration steps that we
allow for convergence to the optimal values. Assuming that VDD, Vth
and W are each constrained to 2M quantized values, it takes O(M3)
simulations of the entire circuit to obtain the final optimal values.
This is many orders of magnitude lower than the complexity of any
direct or random search algorithm that may be used to search for the
optimal solution.

5. RESULTS
We developed a simulation frame work with C/C++/STL and Perl on
Ultra-80 Unix machine for the hierarchical power optimization. Also,
we used off-the-shelf commercial tools for the RTL description, the
functional verification, and the logic synthesis of the target system. A
few arithmetic modules from the target system and
ISCAS89/MCNC91 benchmark circuits are used for the experimental
demonstration. For the range of the technology parameter values, the
2001 updated version of ITRS (International Technology Roadmap
for Semiconductors) and the MOSIS (Integrated Circuit Fabrication
service) parameter test results with TSMC 0.25 micron are used. For
the RTL design, we used verilog hardware description, for the
functional simulation, we used VCS (synopsys), and for the logic
synthesis, we used design analyzer (synopsys) with 0.25 micron
TSMC library.
Monte Carlo simulation is performed for activity profiling of each
module/sub-module as described in [2]. This approach consists of
applying randomly generated input patterns at the primary inputs of
the circuit and monitoring the switching activity per time interval T
using a simulator. Under the assumption that the switching activity of
a circuit module over any period T has a normal distribution, and for
a desired percentage error in the activity estimate and a given
confidence level, the number of required simulation vectors is
estimated. The simulation based approach is accurate and capable of
handling various device models, different circuit design styles, single
and multi-phase clocking methodologies, tristate drives, etc.

Figure 9 shows the hierarchy and the granularity that we used in our
simulation. In this paper, we only simulated 3-level hierarchical case.
Table 1(a) shows the total power consumption with fixed technology
parameters for the given circuits. Table 1(b) demonstrates the
efficiency and effectiveness of the hierarchical power optimization
with the proposed design flow. The experimental results show that
our power optimization strategy delivers an order of magnitude
savings in total (static and dynamic) power without performance
degradation over non-optimized benchmark circuits and our
hierarchical approach is much faster than traditional approach. With
the hierarchical depth of 3 as shown in Figure 9, we can obtain
average 6 times faster optimization than the totally flattened case
when we still have average 83.6% power savings.

Figure 9. Hierarchy in our Simulation

6. CONCLUSION
This paper presents an efficient hierarchical low-power design flow
and a novel switching activity based optimization algorithm for ultra-
low power CMOS VLSI. Experimental results show that the
algorithm yields reductions in power by typically a factor from 19.6x
to 52.4x with optimal Vdd/Vth and multiple W scaling. In summary,
key contributions of the new power minimization technique is: i)
without compromising the speed, the total (static and dynamic) power
is minimized significantly; ii) with the hierarchical approach,
polynomial time optimization is feasible in very large circuits; and
iii) the activity-aware delay assignment ensures that the total time
slack is maximum and the total power is near-minimal. Future work
will include application-specific and architecture-driven issues with
this technology scaling techniques.

Table 1. Results of H2TSD-Based Power Optimization

36

goodelle
Text Box
30

7. REFERENCES
[1] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power

CMOS digital design,” IEEE Journal of Solid-State Circuits, vol.
27, pp. 473-484, April 1992.

[2] J.M. Rabaey and M. Pedram, Low Power Design Methodologies,
Kluwer Academic Publishers, 1996, pp 21-64,130-160.

[3] R. Nair, C.L. Berman, P.S. hauge, and E.J. Yoffe, “Generation
of performance constraints for layout,” IEEE Transactions on
Computer-Aided Design, pp.860-874, Aug. 1989.

[4] T. Gao, P.M. Vaidya, and C.L. Liu,”A new performance driven
placement algorithm,” Proc. of ICCAD, pp. 44-47, 1991.

[5] H. Youssef and E. Shragowitz, “ Timing constraints for correct
performance,” Proc. of ICCAD, pp. 24-27, 1990.

[6] P. Pant, V. De, and A. Chatterjee, “Simultaneous power Supply,
threshold voltage, and transistor size optimization for low-power
operation of CMOS circuits,” IEEE Trans. On VLSI Systems,
vol. 6, no. 4, pp. 538-545, December 1998.

[7] T. Sakurai and A.R. Newton, “Alpha-power law MOSFET
model and its applications to CMOS inverter delay and other
formulas,” IEEE Journal Solid-State Circuits, vol. 25, pp. 584-
594, Apr. 1990.

[8] A. Bhavnagarwala, V. De, B. Austin, and J. Meindl, “Circuit
techniques for CMOS low power GSI,” in Proc. Int. Symp. Low
Power Electron. Design: Dig. Tech. Papers, Aug. 1996, pp. 193-
196.

[9] A.Raghunathan, N.K. Jha, and S. Dey, High-Level Power
Analysis and Optimization, Kluwer Academic Publishers, 1998,
pp 1-25.

[10] K. Roy and S.C. Prasad, Low-Power CMOS VLSI Circuit
Design, John wiley & Sons, Inc., 2000, pp. 201-252.

[11] T. Kobayashi and T. Sakurai, “Self adjusting threshold voltage
scheme (SATS) for low voltage high speed operation,” IEEE
CICC, 1994, pp.271-277.

[12] S. Mutoh, “1-V Power supply high-speed digital circuit
technology with multithreshold-voltage CMOS,” IEEE Journal
of Solid-State Circuits, vol. 30, pp. 847-, April 1992.

[13] A. Fariborz, “A dynamic threshold voltage MOSFET (DTMOS)
for ultra-low voltage operation,” IEDM Tech., 1994, pp.809-818.

[14] L. Wei, Z. Chen, and K.Roy, “Double gate dynamic threshold
voltage (DGDT) SOI MOSFETs for low power high
performance designs,” IEEE SOI conference, 1997, pp. 82-83.

[15] S.S. Sapatnekar, V.B. Rao, P.M. Vaidya, and S Kang, “An
exact solution to the transistor sizing problem ofr CMOS
circuits using convex optimization,” IEEE Trans. On CAD
of Integrated Circuits and Systems, vol. 12, no. 11, pp.
1621-1634, September 1993.

37

goodelle
Text Box
31

